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The most constant difficulty in contriving the engine has arisen from the desire to reduce 
the time in which the calculations were executed to the shortest which is possible. 

Charles Babbage, 1791-1871  
 

PREFACE 
Several recent developments in high-end computing (HEC) have stimulated a re-examination of current 
U.S. policies and approaches. These developments include: 1)  the deployment of Japan’s Earth System 
Simulator, which now occupies the number one position on the Top 500 list of the world’s fastest 
computers; 2) concerns about the difficulty in achieving substantial fractions of peak hardware 
computational performance on high-end systems; and 3) the ongoing complexity of developing, 
debugging, and optimizing applications for high-end systems.  In addition, there is growing recognition 
that a new set of scientific and engineering discoveries could be catalyzed by access to very-large-scale 
computer systems—those in the 100 teraflop to petaflop range.  Lastly, the need for high-end systems in 
support of national defense has led to new interest in high-end computing research, development, and 
procurement. 
 
In recognition of these developments, the FY03 federal budget included the following observations and 
guidance regarding high-end computing: 
 

Due to its impact on a wide range of federal agency missions ranging from national 
security and defense to basic science, high-end computing—or supercomputing—
capability is becoming increasingly critical. Through the course of 2003, agencies 
involved in developing or using high-end computing will be engaged in planning 
activities to guide future investments in this area, coordinated through the NSTC. The 
activities will include the development of an interagency R&D roadmap for high-end 
computing core technologies, a federal high-end computing capacity and accessibility 
improvement plan, and a discussion of issues (along with recommendations where 
applicable) relating to federal procurement of high-end computing systems. The 
knowledge gained for this process will be used to guide future investments in this area. 
Research and software to support high-end computing will provide a foundation for 
future federal R&D by improving the effectiveness of core technologies on which next-
generation high-end computing systems will rely. 
 

In response to this guidance, the White House Office of Science and Technology Policy (OSTP), in 
coordination with the National Science and Technology Council, commissioned the creation of the 
interagency High End Computing Revitalization Task Force (HECRTF).  The interagency HECRTF was 
charged to develop a five-year plan to guide future federal investments in high-end computing. 
 
To ensure broad input from the national community during its planning process, the HECRTF solicited 
public comments on current challenges and opportunities. Using the White Papers from this public 
request for comments, a program committee (see Appendix A) organized a community input workshop 
for focused discussions. Held June 16-18, 2003, the Workshop on the Roadmap for the Revitalization of 
High-End Computing was structured around eight working groups. Each group was given a specific and 
focused charge (summarized in Appendix B) that addressed a specific aspect of high-end computing (e.g., 
technology, COTS-based or custom architecture, software, and applications).   
 
This report is a summary of the workshop findings. Its purpose is to provide guidance to the national 
community and the HECRTF when planning future national programs for the development, specification, 
procurement, deployment, and application of future high-end computing systems.  
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1. EXECUTIVE SUMMARY 
Based on their deliberations, the workshop’s eight working groups developed a set of key findings and 
recommendations to advance the state of high-end computing in the United States.  The common theme 
throughout these recommendations is the need for sustained investment in research, development, and 
system acquisition. This sustained approach also requires deep collaboration among academic 
researchers, government laboratories, industrial laboratories, and computer vendors.   
 
Simply put, short-term strategies and one-time crash programs are unlikely to develop the technology 
pipelines and new approaches needed to realize the petascale computing systems needed by a range of 
scientific, defense, and national security applications. Rather, multiple cycles of advanced research and 
development, followed by large-scale prototyping and product development, will be required to develop 
systems that can consistently achieve a high fraction of their peak performance on critical applications, 
while also being easier to program and operate reliably. A summary of the most critical findings of the 
workshop in each of the eight areas follows. 
1.1. Enabling Technologies 
Power management and interconnection performance are of great and mounting concern.  Today’s very-
large-scale systems consume megawatts of power, with concomitant packaging and cooling problems.  
Equally important, many computations are limited by the bandwidth and latency among chips, boards, 
and chassis. A variety of new device technologies and three-dimensional integration and packaging 
concepts show promise in ameliorating the interconnect bandwidth and heat dissipation problems. We 
urge that attention be focused on these to move them toward system feasibility and prototype. 
 
Looking further ahead, there are many novel devices based on superconducting technologies, spintronics, 
photonic switching, and molecular electronics that are exciting and can be game-changers for the high 
end. However, it is much too early to choose just a few, and we urge a broad, consistent, long-term 
research agenda to incubate and test these ideas in preparation for future generations of systems. 
 
Software for large-scale systems requires scaling demonstration to assess its importance. New approaches 
that reduce time-to-solution through better shared computing models and libraries, coupled with real time 
performance monitoring and feedback, are needed to achieve the promise of high-end computing. 
1.2. COTS-Based Architectures 
The bandwidth of today’s COTS memory systems and interconnection networks limits the performance 
of HEC applications. The advent of memory-class ports into microprocessors will permit implementation 
of higher-bandwidth, lower-latency interconnects.  Moreover, higher-speed signaling and higher radix 
routers will make interconnection networks with higher bandwidths and flatter topologies practical.  
Finally, field programmable gate arrays (FPGAs) will embed specialized functions, application kernels, or 
alternate execution models (e.g., fine-grain multi-threading) in a format that is optimized yet malleable. 
However, realizing these advanced technologies will require continued investment. 
 
More generally, we must develop a government-wide, coordinated method for influencing vendors. The 
HEC influence on COTS components is small, but it can be maximized by engaging vendors on 
approaches and ideas five years or more before the resulting commercial products are created. Given 
these time scales, the engagement must also be focused and sustained. 
 
We must fund long-term research on the key technologies needed for future high-end systems. Beyond 
the research funding itself, academic researchers need access to HEC-scale systems to test new ideas in 
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realistic situations.  Once ideas are proven in a research setting, the best ones must be incorporated into 
production systems by an intentional process.   
1.3. Custom Architectures 
Custom high-end computer architectures are designed explicitly to be incorporated in highly scalable 
system structures and operate cooperatively on shared parallel computation to deliver substantially higher 
performance, efficiency, and programmability than COTS-based systems, while imposing lower cost, 
space, and power requirements. Multiple technical approaches for custom-enabled architectures of 
significant promise have been identified that, with necessary funding, can be realized in the near and 
medium term, including, but not limited to: a) spatially direct-mapped architecture,(b) vectors, c) 
streaming architecture, d) processor-in-memory architecture, and e) special purpose devices.  
 
Proof of concept of such innovative architectures is feasible within the next five years, and petaflops-scale 
computer systems can be deployed substantially before the end of this decade. However, to meet this 
objective it is imperative that research in advanced, custom scalable HEC architecture be sponsored at an 
accelerated and continuous level to regain U.S. leadership in this technology that is strategically critical 
for national security and commerce. New partnerships are required among industry, universities, 
government laboratories, and mission agencies.  
 
Both system software and programming environments must be developed that support and exploit the 
capabilities of the custom architectures. System software must be developed to provide the dynamic 
resource management anticipated by many of these architectures in order to improve performance 
efficiency and remove much of the burden from the programmers. Programming environments must be 
developed that capture and expose intrinsic algorithm parallelism for greater performance and provide 
high-level constructs to eliminate low-level and error-prone detail to minimize application development 
time. In addition, effective software means must be provided to enable rapid porting of legacy 
applications and libraries to maintain continuity of the user software base. 
1.4. Runtime and Operating Systems 
Unix and its variants have been the operating system of choice for the technical world for nearly thirty 
years. While Unix has served the community well, its very design point and set of assumptions are 
increasingly at odds with the needs of high-end computing. Alternate resource management models are 
needed that provide better performance feedback for dynamic adaptation, including increasing coupling 
among operating system, runtime, and applications.  New models for I/O coordination and security are 
needed as well. Simply put, more system software research that is revolutionary, rather than evolutionary, 
will be needed to support the next generation of petascale systems. 
 
Lastly, the current lack of large-scale testbeds is limiting operating system and runtime research for the 
HEC community. Such testbeds can provide the broad research community with access to flexible testing 
environments and scalability research platforms. These testbeds should be available to university groups, 
national laboratories, and commercial software developers. 
1.5. Programming Environments and Tools 
The most pressing scientific challenges will require application solutions that are multidisciplinary and 
multi-scale. In turn, these software systems will require an interdisciplinary team of scientists and 
software specialists to design, manage, and maintain them. This will require a dramatically higher 
investment in improving the quality, availability, and usability of the software tools used throughout an 
application’s lifecycle. 
 
The strategy for accomplishing these goals is not complex, but it requires an attitude change about 
software funding for HEC. Software is a major cost component of modern technologies, but the tradition 
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in HEC system procurement is to assume that the software is free. Mission critical and basic research 
HEC software is not provided by industry because the market is so small and the customers are not 
willing to pay for it. Federally funded management and coordination of the development of high-end 
software tools for high-end systems are needed. 
 
Funding is also needed for basic research and software prototypes, and for the technology transfer 
required to move successful prototypes into real production quality software. It is urgent that we invest in 
building interoperable libraries and software component and application frameworks that simplify the 
development of these complex HEC applications. It is also essential that we invest in new, high-level 
programming models for HEC software developers that will improve productivity and create new 
research programs that explore the hardware/software boundary to improve HEC application 
performance. 
 
Structural changes are needed in the way funding is awarded to support sustained engineering. We need a 
software capitalization program that resembles the private sector in its understanding of the software 
lifecycle.  One approach to coordinating a federal effort in this area would be to establish an institute for 
HEC advanced software development and support, which could be a cooperative effort among industry, 
laboratories, and universities.  
1.6. Performance Analysis 
The single most relevant metric for high-end system performance is time to solution for the specific 
scientific applications of interest. Reducing the time to solution will require aggressive investment in 
understanding all aspects of the program development and execution process (programming, job setup, 
batch queue, execution, I/O, system processing, and post-processing). 
 
The current practice in system procurements is to require vendors to provide performance results on some 
standard industry benchmarks and several scientific applications typical of those at the procuring site.  
Constructing these application benchmarks is a cost- and labor-intensive process, and responding to these 
solicitations is very costly for prospective vendors. Moreover, these conventional approaches to 
benchmarking will not be suitable for future acquisitions, where the system to be procured may be over 
ten times more powerful than existing systems. 
 
Recent successes with performance modeling suggest that it may be possible to accurately predict the 
performance of a future system, much larger than systems currently in use, on a scientific application 
much larger than any currently being run.  However, significant research is needed to make these methods 
usable by non-experts. Research is also needed to bolster capabilities to monitor and analyze the 
exploding volume of performance data that will be produced in future systems.  All of this research will 
require significant involvement by vendors, and thus some dialogue will be needed to resolve potential 
intellectual property issues.  
1.7. Application-Driven System Requirements 
Multiple disciplines made the quantitative case for speedups in sustained performance of 50 to 100 over 
current levels to reach new, important scientific thresholds. In QCD, architectures with a sustained 
performance of 20 to 100 TF would enable calculations of sufficient precision to serve as predictions for 
ongoing and planned experiments. In magnetic fusion research, sustained execution of 20 TF would allow 
full-scale tokamak simulations that resolve the natural length scales of the microturbulence, as well as 
enable self-consistent gyrokinetic modeling of the critical plasma-edge region. Lastly, 50 TF was 
identified as an important threshold for developing realistic models of lanthanides and actinides on 
complex mineral surfaces for environmental remediation, and for developing new catalysts that are more 
energy efficient and generate less pollution.  
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Applications have become so complex that multidisciplinary teams of application and computer scientists 
are needed to build and maintain them. The traditional software model of a single programmer developing 
a monolithic code is no longer relevant at the high end and cutting edge. In particular, large teams with 
diverse domain expertise are needed to integrate multi-scale simulation models. No single person or small 
group has the requisite expertise. 
 
Application codes and their associated analysis tools are the instruments of computational science. The 
developers of these applications can be likened to instrument specialists in that they possess the most 
detailed knowledge of the applications’ capabilities and usage. Unlike experimental science, however, the 
computational end stations need not be located at the HEC facilities. Within this facilities analogy, HEC 
users in the form of collaborative research teams would interface primarily with the application specialists 
within domain-specific research networks that develop, optimize, and maintain the relevant applications. 
1.8. Procurement, Accessibility, and Cost of Ownership 
Procurements should use functional specifications to define science requirements and the application 
environment. One should also minimize the number of mandatory requirements, avoid restricting 
competition, and permit flexible delivery schedules.  The total cost of ownership, together with technical 
and risk assessments, should be the primary evaluation criterion. Agencies that are large users should 
provide HEC services to agencies that are small users employing any of the appropriate, standard 
interagency agreement vehicles, and the using agency must supply a multi-year financial commitment to 
the supplying agency. 
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2. ENABLING TECHNOLOGIES FOR HIGH-END COMPUTING 
Sheila Vaidya, Chair 
Lawrence Livermore National Laboratory  
 
Stuart Feldman, Vice Chair 
International Business Machines (IBM) 
 
There are two distinct approaches to achieving the performance increases needed by future high-end 
computer systems: 1) highly scalable architectures exploiting many-million-way parallelism, and 2) 
advanced component technologies with dramatic improvements in critical properties. Reliance on new or 
improved technologies to provide significant gains in system performance has been a major strategy 
throughout the half-century history of digital computer development. Clock rates of 10 KHz in 1950 have 
increased to 1 GHz in 2000, five orders of magnitude or a tenfold increase every decade.  Even as the first 
strategy of unprecedented parallelism is used to deliver operational capability in the trans-petaflops 
performance regime, advanced technologies are required to make such unique system architectures both 
feasible to build and practical to operate. In addition to affecting logic switching speed, technology 
advances impact memory density and cycle time, logic density, communication bandwidth and latency, 
power consumption, reliability, and cost.  
 
Advances include both incremental improvements of existing device types (e.g., embedded DRAMs) and 
novel technologies for new component classes (e.g., MRAMs or holographic storage). In extreme cases, 
technology advances may inaugurate new computing paradigms (e.g., quantum computing). The working 
group considered basic technology and components, both hardware and software. In particular, it 
addressed areas that are unique to high-end computing or are unusually stressed by it, and that would not 
be delivered by the commercial sector in time to meet the needs of the high-end computing community. 
While not exhaustive, several promising opportunities, technical strategies, and challenges to the 
development and exploitation of possible future device and component technologies are described. 
2.1. Enabling Technologies 

2.1.1. Device Technologies 
Semiconductor. Essentially all current computing systems are based on complementary metal oxide 
semiconductor (CMOS) integrated circuits, and billion-transistor chips will soon be routinely available. 
Such progress has been made possible by continuing technological improvements in semiconductor 
fabrication: advanced lithography, copper interconnects, and low-k dielectrics, to name a few. The 
International Technology Roadmap for Semiconductors (ITRS) [15] projects that feature sizes will scale 
down to 22nm by 2016. However, key technological enhancements must be emphasized in the near term 
for added benefit to high-end computing. 
 
Silicon-on-Insulator (SOI) CMOS promises lower power integrated circuits. Although there is industrial 
interest in this technology for mobile applications, an aggressive scaling of high-performance SOI-based 
System-on-Chip (SoC) could prove extremely valuable to HEC as the chip count/package and, hence, 
total power dissipated/node, rises. Simultaneously, device technologies that enable SoC Processor-In-
Memory (PIM) architectures must be supported aggressively. These include smart memories and small-
scale, multithreaded multiprocessor concepts, as well as novel three-dimensional device constructs.  The 
latter will allow building upward on a CMOS SoC underlayer using advanced processing concepts such 
as laser annealing. 
 
Furthermore, integration of electro-optical components (based on III-V compounds) on silicon— 
specifically, on-chip lasers for driving optical signals—coupled with fast, intelligent (all-optical) routers 
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can be extremely beneficial in building integrated, low-latency backplanes. A concerted research and 
development effort in this area, which incorporates advanced three-dimensional packaging concepts, 
could significantly benefit the design of high-end computing systems. 
 
Lastly, because CMOS performance improves at lower temperatures (~77°K) due to both higher 
switching speed and lower power dissipation, a variety of low-temperature approaches must be evaluated 
from a cost/performance perspective for possible implementation in the medium term. Several practical 
problems related to integration of refrigeration and maintenance duty cycles must be demonstrated in 
production prototypes, but the opportunities could be equally significant for high-end computing. 
 
Superconducting Technologies. Superconducting technologies exploit the physical property that some 
materials exhibit zero electrical resistance when cooled below a critical threshold temperature. For 
niobium on a silicon substrate, this critical temperature is approximately 4°K. Essentially all 
superconductor logic devices are based on the Josephson Junction (JJ), a current-driven switching device 
projecting two states: a zero resistance state and a high resistance state. Although early work proved 
disappointing, a new class of superconductor logic based on the “squid” (a loop of two Josephson 
Junctions and an inductor), originally developed for highly sensitive sensors, has yielded dramatic 
improvements in logic speed and low power.  
 
Rapid Single Flux Quantum (RSFQ) gates have been demonstrated with switching rates exceeding 700 
GHz. Although today’s manufacturing processes at a micron resolution deliver clock rates in the 20 to 40 
GHz range, new sub-micron process technologies could enable 100 and 200 GHz clocks with power 
consumption of 0.1 microwatt per gate. Development of these advanced fabrication procedures, as well as 
accompanying logic and memory architectures, should be the basis of future, mid-term research and 
development. (A previous point design study, HTMT, demonstrated that a petaflops-scale computer 
system based on RSFQ logic would require only 400 square feet of floor space and consume less than one 
megawatt of power, including cooling.) 
 
Nanotechnology. In the longer term, beyond the fundamental limits of silicon scaling, radical changes in 
materials and processes used for component fabrication may be required. Several nanotechnologies show 
promise for improving areal density, data communication, and 3-D assembly. These could enhance 
parallel memory access for logic operations, and provide high interchip bandwidth or inter-board 
communication as well. MEMS (Micro-Electrical Mechanical Systems) are one such enabling technology 
for improving data storage via high areal density, massive parallelism, and lower power consumption, 
albeit with slow response. Researchers believe that 1 terabit/square inch is easily achievable with MEMS, 
about 30 times that of current magnetic hard drives.  
 
MEMS storage devices are inherently parallel by nature of the optical read/write process. In addition, 
MEMS, judiciously deployed, could enable high-bandwidth, free-space, optical communication among 
compute nodes. While MEMS-based optical routing is being explored for long haul communications, 
system design studies and tradeoffs for high-end applications are currently lacking. 
 
Spintronics, the development of devices that harness the spin degree of freedom in materials, not just their 
charge, is another important research and development area with a payoff of roughly ten years. A current 
embodiment of spintronics is the magnetic random access memory (MRAM), which is being 
commercialized by Motorola and IBM/INFINEON as a replacement for FLASH memory. MRAM is 
nonvolatile, has the potential of matching SRAM speeds at DRAM densities, and scales favorably with 
design rule. The device consists of two electrically conducting magnetic materials separated by an 
insulator. When the layer magnetizations are parallel, the device impedance is low; when they are anti-
parallel, the impedance is high, representing a “1” or a “0” bit.  
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The use of MRAMs, coupled with CMOS logic in creative configurations to mitigate the memory 
performance bottleneck, could have an immediate payoff for the HEC community. In the longer term, 
alternate spin-based transistors and light-emitting devices, which are the subject of sporadic university 
research in the United States today, could provide novel micro-architectural building blocks for future 
HEC.  
 
Alternate nanodevices based on molecular electronics are also being explored at places such as HP 
Laboratories to evolve novel fault-tolerant HEC platforms. Some of these approaches could potentially 
enable entirely new paradigms in switching, memory and system reliability. We urge an increased focus 
on these areas in order to understand their capabilities and limitations in a timely manner, since they could 
revolutionize “conventional” design concepts in supercomputing platforms. 
2.1.2. Memory Devices 
In the very near term, custom silicon integrated circuits for intelligent, adaptable memory systems—with 
accompanying middleware and operating system to manage them and compiler technology and 
performance tools to exploit them—could be a valuable asset to both uniprocessor and PIM organizations, 
as well as shared memory multiprocessor nodes. Although prototype intelligent memory systems are 
being considered (e.g., the Impulse memory controller), they fall short in coherency management and 
synchronization control. The design and fabrication of such custom hardware is impeded by poor profit 
margins on such low-volume components. Hence, the need for customized memory-controllers 
underscores a larger problem of making available custom integrated circuits/packages to test possible 
design innovations for HEC. Without some means of cost-sharing this expense with the private sector, 
progress in optimizing SoC architectures for HEC will be slow and sporadic. 
 
High-end computing demands low-latency, high-bandwidth access to main memory for many of its 
applications. While latency tolerance can be built into the SoC, memory bandwidth remains by far the 
most important technological hurdle facing high-end subsystems today. Hence, for mid-term impact on 
HEC, it is necessary to aggressively pursue concepts that: 1) enlarge memory capacity on-chip, in close 
proximity to the arithmetic operations (such as three-dimensional integration of memory on CMOS);  
2) provide high-speed access off-chip (waveguide/free space optical interconnects coupled with high-
bandwidth WDM-based smart network topologies); and 3) deliver three-dimensional storage and readout 
from main memory (such as MEMS or holographic storage).  
2.1.3. Storage and I/O 
For some mission applications, the critical resource and performance driver is not the peak floating point 
performance or even the main memory bandwidth, but rather the capacity, speed, and logical accessibility 
of massive amounts of data. Data sizes of many petabytes, even approaching exabytes, may be critical for 
some tasks. Cost-effective storage and rapid access, as well as reliable storage and communication, will 
dominate the quality, utility and cost at many deployed sites. Even today, the major cost of many systems 
is for the secondary storage system rather than the processors. Advanced technologies, which include 
software, must be developed over the period of consideration to meet the exponentially increasing 
demands for effective data storage and management. 
 
Advanced technologies for low-cost mass storage that have demonstrated promise and should be 
aggressively pursued in the mid term include holographic optical storage using photo-refractive 
components and spectral hole burning, MEMS, scanning tunneling microscopy and other e-beam-based 
techniques, and three-dimensional magnetic storage using MRAMs. In the long term, molecular 
electronics may hold the key to the ultimate in storage density. In the near term, however, better I/O 
controllers and remote DMA facilities, in conjunction with improved software technologies for cluster 
storage access and higher-level object-based storage systems, could prove extremely invaluable. 
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2.1.4. Interconnects 
Off-chip interconnection for high-end systems remains our greatest concern. Even today, off-chip 
electronic connections are inadequate because they degrade chip clock frequencies by an order of 
magnitude or more. Coupled with the ramifications of DRAM speed and memory organization as well as 
conventional microprocessor cache hierarchy, sustained system performance of 1 to 5 percent of peak is 
not uncommon in applications that require high global/local communication bandwidth. As our appetite 
for bandwidth between memory and microprocessors grows, it is very likely that new technologies (e.g., 
optical communication links with smart network topologies that balance average bandwidth against 
number of links) will become mandatory. The following section separates interconnect technology into 
two categories and discusses them individually. 
 
Passive Interconnects. Evolution in optical network technology for metropolitan area networks is forcing 
significant changes in both the active and passive components of communication links. By definition, 
passive interconnects deploy fixed elements, which implies minimum dynamic network optimization or 
error correction capability. Conversely, active interconnects imply real-time software control, integrated 
with the loop architecture, to ensure optimum operation with respect to each of the codependent active 
components.  
 
A concerted effort to leverage the telecommunication infrastructure for high-end interconnections should 
include evolving a high-speed serial optical interface for fiber backplanes in the near term, and high-speed 
photonic switching in the long term. In the mid term, reliable wavelength division multiplexing (WDM) 
fiber or free-space optical interconnects for board or inter-board communication—interconnecting 
terascale node boards with packet-switched, source-routed communication links—can have a tremendous 
payoff for high-end platform design. This development should be encouraged, while simultaneously 
accelerating component research and development activity from universities into mainstream industry for 
system implementation.  
 
Beyond ten years, on-chip optical waveguide clocks are plausible. Again, while such research activity 
falls under the purview of basic science, without additional investment of resources such enhancements 
could remain an unfulfilled dream for the high-end computing community. 
 
Active Interconnects. The shift from passive to active optical components holds great promise for 
increasing network flexibility and robustness. Dynamic wavelength rerouting can provide operational 
efficiency and protect against performance degradation. Active modules can also suppress transients and 
manage power fluctuations. Furthermore, incorporating intelligence into the network architecture and 
using active filters with tunable sources can increase both flexibility and bandwidth; active compensation 
of filtering response can allow for tighter channel spacing.  
 
However, the shift from passive to active interconnects comes with an incremental cost in research and 
development that the telecom industry can least afford today. Hence, the adoption of active networking 
concepts into the mainstream communication environment remains slow. Therefore, it is incumbent on 
the government to aid in screening and evolving those active interconnect technologies and to facilitate 
their transition to prototypes. Specifically, concepts involving intelligent electronic crossbar switches, 
dynamic network processing on-board, and data vortex constructs lend themselves to near- to mid-term 
payoffs, and should be aggressively pursued.  
2.1.5. Single Chip Architecture 
Emerging semiconductor technology and fabrication processes are integrating CMOS logic and DRAM 
on the same silicon semiconductor substrate. This capability enables a new family of hardware computing 
constructs referred to as “single chip architectures.” A System-on-Chip (SoC) integrates a conventional 
processor core with a complete memory hierarchy, including one or more levels of SRAM cache and one 
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or more banks of DRAM main memory. Symmetric multiprocessing (SMP) on a chip co-locates two or 
more conventional processor cores on the same semiconductor die with snooping mechanisms for cache 
coherence across L1 and L2 SRAM caches private to each processor, and an L3 DRAM cache shared 
among all processors. Processor-In-Memory (PIM) positions logic next to DRAM row buffers. This 
exposes all bits of a memory block (typically 2048 bits) to low-latency logic for in-memory processing. In 
addition, DRAM memory may be partitioned into multiple banks, each with its own wide logic array, 
greatly increasing the internal memory bandwidth. 
 
Single chip architectures will play an important role in future high-end systems, providing smaller 
packages, reduced power consumption, low latency of access, higher logic density, higher effective 
bandwidth, and greater hardware parallelism. They can enable fine-grained, irregular parallel computing 
paradigms and reconfigurable circuits for enhanced system performance and reliability. However, future 
research and development will be required to improve the performance characteristics of the basic storage 
and logic devices, to increase density and decrease power consumption further, and to devise new 
architectures—perhaps adaptive, possibly deploying asynchronous logic—that can best exploit this new 
capability. 
2.1.6. Power/Thermal Management and Packaging 
Both users and vendors are increasingly concerned with reducing power consumption, decreasing 
footprints, and managing the heat generated in large-scale computing environments. Based on the ITRS 
roadmap [15], high-performance CMOS processors will generate 120 to 200 watts of heat by 2009. ASCI 
Purple, projected at 100 peak teraflops, is expected to consume 5 megawatts of power, plus an additional 
3.5 megawatts for cooling and power management. Future high-end systems will co-locate hundreds of 
integrated circuit chips, running at higher clock rates, with RF, MEMS and other optical components. 
Thus, minimizing floor space and power are important imperatives not only for machines serving the 
national security community, but also for future servers and workstations that service the private sector. 
Research in novel heat dissipation and packaging methodologies must closely parallel developments in 
system architecture and device design. 
 
Some commercial directions (e.g., lower chip voltages, dynamic power management on chip, and 
operating system optimization) are already being tapped. More aggressive cooling methodologies that 
deploy evaporative film boiling or spray cooling of devices with low-boiling-point inert fluids need to be 
exploited at the full-scale system level in the near term. Commercial manufacturers have avoided 
incorporating liquid cooling technologies due to the up-front financial burden of technology change as 
well as customer discomfort. However, a step function away from forced air cooling will be necessary as 
we invoke higher-density packaging (2.5-D initially, where a few layers of active components are stacked 
atop each other) for faster and shorter connectivity. 
 
In the longer term, true 3-D packaging will be needed to achieve shorter latencies and enhanced raw 
computing capability. New concepts will be required, some of which could be borrowed from other 
applications. For example, micro-channel cooling, which relies on single phase liquid convection in 
silicon micro-channels, can dissipate heat fluxes on the order of kilowatts/cm2.  This technology has been 
lifetime-tested and is in use for cooling three-dimensional stacks of high-performance AlGaAs laser diode 
arrays. The concept could be adopted for high-end subsystems, coupled with active temperature control 
(i.e., dynamic management of device temperatures to monitor hot spots, which could be compensated for 
by changing local clock speeds and reallocating workloads). However, development resources will be 
necessary to assess the feasibility of these concepts, especially in light of the concomitant requirement of 
vertical interconnects for data communication through these packages. 
 
Fundamental research is needed to progressively improve the computing power per watt criterion as 
systems grow in scale. Moreover, within ten years, the current semiconductor roadmap for operations/ 
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watt flattens. Because the demand for total operations per second will continue to rise, breakthroughs in 
devices and packaging will be essential to deliver platforms with adequate manufacturability. 
2.1.7. Software Methods and Algorithms 
In addition to hardware technologies, new fundamental advances in software technologies are necessary 
to enable and exploit effective petascale high-end systems. Major advances are required in both 
application techniques and resource management software methodologies. Principal directions for future 
research and development in software technology for HEC are considered below.  Other working groups 
also considered these issues in their discussions (see chapters 5 and 6). 
 
Parallel Algorithms. Future petascale computers will require billion-way parallelism to achieve their 
performance goals. Hence, new classes of algorithms will be required that expose high degrees of 
parallelism, including intrinsic fine-grain parallelism, to the compiler and system hardware. In addition, 
the overhead for communication and synchronization must be sufficiently low to permit lightweight 
threads to function efficiently. If future high-end systems are to succeed, advanced algorithmic techniques 
must be devised that incorporate these properties for a wide range of important applications. 
 
Runtime and Operating Systems. Operating system software has changed little over the past two 
decades, although research continues. Microprocessor-based massively parallel processors and clusters, 
combined with Unix and Linux, have defined the status quo for an extended period. New generations of 
high-end systems incorporating many millions of execution sites and distributed shared memory—and 
perhaps message-driven, lightweight, transaction processing with multithreading hardware support—will 
demand an entirely new class of resource management and task supervisor software.  
 
Simple local support routines, synthesized into a single-system image, global master control program 
(MCP), may be based on the synergism of semi-independent agents that monitor and react to changes in 
system state and status employing methods like introspective threads. Such new environments would be 
highly robust because the failure of any one agent, and/or its underlying local hardware support, would 
not imply the failure of the entire system. Research is required to develop this new generation of system 
management and runtime software technology. 
 
High-Level Languages and Compilation. Today’s parallel computers are difficult to program using 
conventional models, techniques, and tools. Future many-million-way parallel petascale computers will 
become almost impossible to program without significant advances in programming methodology and 
technology. One aspect of this will be new, very-high-level formalisms or programming languages that 
facilitate the capture of the user-defined functions with a minimum of effort, while also exposing 
algorithm characteristics of parallelism and affinity (temporal and spatial locality). Such frameworks must 
enable the rapid integration and reuse of distinct program modules that were not necessarily written to 
form a single program.  
 
To make this possible, extended methods like the common component architecture (CCA) discipline must 
be developed to guarantee computation that is easy and effective, cooperative and coordinated. 
Compilation strategies and tools must be devised that expose and manage both parallelism and affinity, 
while coordinating with the services provided by future runtime system software. Both future languages 
and compiler technology must include facilities for performance and correctness debugging. 
 
2.2. Summary of Strategic Findings 
From the wealth of facts and considerations derived from this important community forum, several key 
observations emerged that should be incorporated in any planning of future high-end system procurement 
and development. The most significant among these are presented below. 
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Areas currently raising concerns that are likely to remain challenging for many years to come are the 
management of power and improvements in interconnection performance. We urge considerable 
investment, in both the short and medium term, in these areas. 
 
Seymour Cray famously stated that his main contributions to supercomputing were related to “plumbing.” 
Managing heat and reducing power use continue to be major problems. Almost by definition, high-end 
computing calls for larger numbers of computing devices than more common installations, exacerbating 
traditional problems. 
 
Many computations are limited by the bandwidth and latency among chips, boards, and chassis. 
Numerous forms of fast networking and interconnects have been examined, but most commercial 
computers do not yet require a shift to optical interconnects. We consider research and development in 
this area to be a very high priority. There are many types of computations that are fundamentally limited 
by interconnect delays because they cannot fit all of the necessary information into on-chip memory. 
 
In addition, a variety of new device technologies and three-dimensional integration and packaging 
concepts show promise for ameliorating the problems with interconnect bandwidth and heat dissipation. 
We urge that attention be focused on these to advance them to the stage of system feasibility and 
prototype. 
 
Looking further into the future, there are many novel devices based on superconducting technologies, 
spintronics, photonic switching, and molecular electronics that are exciting and can be game-changers for 
HEC. However, it is much too early to choose just a few, and we urge a broad, consistent, long-term 
research agenda to incubate and test these ideas in preparation for future generations of systems. 
 
Some important software approaches require system demonstration to assess their importance. The 
purpose of HEC is to solve new computationally intensive problems, cost-effectively and expeditiously. 
Approaches that fundamentally address the time to solution through better shared computing models and 
libraries, coupled with real-time performance monitoring and feedback, are needed to achieve the promise 
of high-end computing. 
2.3. Enabling Technology Roadmap 

2.3.1. Time Scales and Investments 
Radical technologies require both time and investment before they become practical for incorporation into 
major systems. We believe that one of the key roadblocks to greater progress in HEC capability has been 
the sporadic investment in its future. Therefore, we call for a continuous pipeline of research and 
development resources to nucleate new ideas and to move forward—from concept into product—those 
ideas that solve specific problems facing high-end computing,. A key point driving our conclusions was 
the practical time scale and costs involved in introducing radical, or even significantly changed, 
technologies into large-scale systems.  
 
Because of the complexities of market dynamics and the limited demand for high-end computing, it is 
difficult for a new and enabling concept to appear in a full-scale, high-end system in less than 7 to 10 
years, if at all. Hence, we recommend a focused parallel effort that explores technology relevance to other 
industrial applications to accelerate their early adoption into production prototypes. This could be 
enforced by, for example, including in our assessment application suite some complex aircraft design or 
automobile crash simulation codes that could benefit from optimized HEC capability. This would expand 
the market need and would help to leverage government investments with private sector funds as the 
systems became available. 
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In terms of nomenclature, we have assumed that any technology that will appear in full-scale deployments 
(large-scale systems in production use) by 2009 already exists and has been tested in subsystems, not just 
on the laboratory bench. Clearly, variations will be needed for integration into high-end computing. This 
is what we are calling out as a near-term investment need. The themes here are few, but they demand 
immediate attention. Mid term takes us into the next phase where concepts have been proven/invented 
and their usefulness to high-end computing established. However, system embodiments must be built and 
tested and their scaling implications must be assessed. These capabilities will only be available in high-
end platforms in the next decade. Here, many more possibilities exist. These should be studied in pilot 
environments where cross interactions can be analyzed. This calls for additional resources.  
 
Of course, several technologies are being explored that could enable novel systems approaches.  It is far 
too early to pick winners amongst these.  Instead, a broad set of initiatives should be funded with periodic 
checkpoints that can separate the likely winners in key areas. 
2.3.2. Key Technologies  
Based on working group discussions, Table 2.1 summarizes the group’s assessment of technology 
evolution and development during the next fifteen years. 
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FY05-FY09 FY10-FY14 FY15-FY19 

Devices 
Silicon on Insulator Low temperature CMOS Nanotechnologies 
Si-Ge Superconducting RSFQ Spintronics 
Mixed III-V devices   
Integrated electro-optic and high 
speed electronics 

  

Memory 
Optimized memory hierarchy 3-D memory (e.g., MRAM) Nanodevices 
Smart memory controllers  Molecular electronics 

Storage and I/O 
Object-based storage Software for cluster storage 

access  
Spectral hole burning 
 

Remote DMA MRAM, holographic, MEMS, 
STM and E-beam 

Molecular electronics 

I/O controllers (MPI, etc.)   
Interconnects 

Optical system area networks 
(fiber-based) 

Active networks Scalability (node density and 
bandwidth) 

Serial optical interface High-density optical networking  
Electronic crossbar switch Optical packet switching  
Network processing on board Data vortex  
 Superconducting crossbar 

switches 
 

Single Chip Architectures 
Power efficient designs Adaptive architecture  
System-on-Chip (SoC) Optical clock distribution  
Processor-in-Memory (PIM) 
(e.g., Caltech MIMD) 

Asynchronous designs  

Reconfigurable circuits   
Fine-grained irregular parallel 
computing 

  

Packaging and Power 
Optimization for power 
efficiency 

3-D packaging and cooling (e.g., 
microchannel) 

Higher scalability concepts 
(improving operations/watt) 

2.5-D packaging Active temperature control  
Liquid cooling (e.g., spray)   

Software and Algorithms 
Compiler innovations for new 
architectures 

Very high level language 
hardware support 

 

Tools for robustness (e.g., delay 
and fault tolerance) 

Real time performance 
monitoring and feedback 

 

Low overhead coordination 
mechanisms 

Parallel Random Access 
Machine model (PRAM) 

 

Performance monitors   
Sparse matrix innovations   

Table 2.1 Enabling Technology Opportunities 
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3. COTS-BASED ARCHITECTURES 
Walt Brooks, Chair 
NASA Ames Research Center 
 
Steven Reinhardt, Vice Chair 
SGI 
 
Commodity off-the-shelf (COTS) components are currently used to construct a wide variety of 
commercial and custom high-end computing systems.  The working group's charter focused on COTS-
based systems, rather than on systems composed solely of COTS components.  Based on this, we defined 
COTS in three overlapping but non-identical ways. The first definition considered technologies intended 
for enterprise or individual use (e.g., commodity processors, memories, and disks). The second 
considered technologies that require such a large investment to replicate that the high-end community 
must exhaust every possibility of using the commodity components before building specialized 
components for high-end systems. The third considered technologies whose evolution is largely 
determined by other markets; the HEC market has little influence over these. The working group's bias 
was that application needs must be met by the systems delivered (whether COTS-based or custom), and 
that COTS deficiencies be viewed as challenges to be overcome rather than be reflected as systems with 
constrained capabilities. 
 
We considered the capability roadmap of the anticipated COTS-based HEC system architectures through 
the end of the decade. This roadmap identified the critical hardware and software technologies and 
architecture developments required, both to sustain continued growth and to enhance user support.  
Although current COTS-based systems are well suited to a variety of important problems, the group 
concentrated on their shortcomings for addressing key problems of national interest. 
3.1. Enabling Technologies  
Current COTS-based systems typically contain a small non-COTS component, often limited to the 
network interconnect (e.g., Myrinet or Quadrics). Although these systems are suitable for a variety of 
tasks, the working group believes that COTS-based systems can address a wide range of application needs 
by the inclusion of existing or imminent technologies.  Our vision is of a computing fabric incorporating a 
heterogeneous set of computing devices.  In addition to COTS-based processors and their associated 
memories, we expect COTS-based systems to include improved interconnects and support for 
reconfigurable computing. 
 
The advent of memory-class ports into microprocessors will permit implementation of higher-bandwidth, 
lower-latency interconnects.  Coupled with other technology advances (e.g., higher-speed signaling and 
higher-radix routers), interconnection networks with higher bandwidths and flatter topologies will be 
practical.  However, as the working group addressing enabling technology noted in chapter 2, realizing 
these advances will require continued investment. 
 
Initially implemented via field programmable gate arrays (FPGAs), reconfigurable or application-specific 
computing will embed specialized functions, application kernels, or alternate execution models (e.g., fine-
grain multi-threading) in an optimized yet malleable form.  Moreover, we believe functions with broad 
appeal to HEC applications (e.g., global address space or collective operations) will be implemented in 
system ASICs (application specific integrated circuits). 
 
Based on working group discussions, these and allied topics are discussed below. 
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3.1.1. Memory Systems and Interconnects 
We must increase memory bandwidth and provide mechanisms for using it more effectively.  High-end 
computing applications are typically more demanding of memory bandwidth than the commercial 
workloads that are the optimization target for COTS processors.  Simply put, the memory bandwidth on 
current and projected COTS processors is not increasing fast enough. 
 
Despite the economic realities, the HEC community should influence the vendors of COTS processors to 
provide higher-memory bandwidth, recognizing that changes will take three to five years to appear in 
commercial products. Outside the processor itself, we should investigate new computational structures 
that exploit scarce processor-memory bandwidth as effectively as possible. Examples include moving 
specific functions (e.g., reductions or fast Fourier transforms (FFTs)) into ASICs or FPGAs. 
 
Like memory systems, the bandwidth and latency of today’s interconnection networks limit application 
performance. To redress this problem, two approaches are required. First, we must increase the bandwidth 
of links and routers and use higher radices in routers.  The bandwidths required will not be funded by the 
non-HEC commercial market, but can be developed by HEC-focused vendors.   
 
The second approach must exploit memory-class mechanisms for processor communication with remote 
nodes. This is in contrast to current commodity I/O-class mechanisms, whose latency and bandwidth do 
not support HEC needs. Fortunately, some recently developed COTS processors use point-to-point links 
for memory connection. (AMD's Opteron processor and its HyperTransport links are an example of this 
node architecture, with similar abilities expected from other COTS vendors.) These provide the needed 
ports and a new opportunity for system architecture design.  
3.1.2. System Heterogeneity 
HEC applications span a broad spectrum with a diverse set of resource demands. Because matching each 
portion of an application to its execution target (ASICs, FPGAs, or multiple processor types) can yield 
better overall performance, we must provide architectures that support heterogeneous elements in the 
system fabric. ASICs implement performance-critical functions that are used by numerous applications.   
 
FPGAs can be reconfigured to accelerate those portions of application code that have the greatest 
computational intensity or need special functions. However, programming tools for FPGAs must improve 
greatly if FPGA use is to become more widespread.  A multiplicative benefit of supporting FPGAs is that 
the ability to rapidly reconfigure functionality could accelerate the rate of HEC architectural research. 
Lastly, support for multiple processor types would allow HEC-optimized processors to perform I/O 
through COTS processors and their mass-market I/O adapters. 
3.2. Summary of Strategic Findings 
Two critical findings emerged from the working group discussions. We believe their implementation 
could accelerate and enhance the use of COTS-based technologies in high-end systems. 
3.2.1. Government Coordination 
We must develop a government-wide, coordinated method for influencing vendors.  The HEC influence 
on COTS components is small, but it can be maximized by engaging vendors on approaches and ideas 
five years or more before commercial products are created.  Given these time scales, the engagement must 
also be focused and sustained. 
 
We recommend that academic and government HEC groups collect and prioritize a list of requested HEC-
specific changes for COTS components, focusing on an achievable set. This process should also 
investigate commercial needs to identify overlaps with HEC; this will increase the alignment between the 
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COTS manufacturers and HEC needs. To the extent that HEC needs do not overlap with commercial 
needs, the government should fund the COTS vendors to make these changes. 
 
Vendors of COTS-based HEC systems can address some of HEC’s key technology needs in their 
systems. They may be more easily influenced than the COTS vendors themselves. Again, early focused 
government funding will likely be necessary to ensure robust implementations of innovative technology. 
3.2.2. Long-Term Research Funding 
We must fund long-term research on the key technologies needed for future high-end systems. We expect 
the current situation, where COTS components often meet HEC’s key requirements poorly, to persist 
indefinitely. To combat this, a comprehensive research agenda is needed to mitigate component 
shortcomings and develop those key technologies that could be incorporated by the COTS manufacturers.  
Beyond the research funding itself, academic researchers need access to HEC-scale systems to test new 
ideas in realistic situations. Once ideas are proven in a research setting, the best ones must be 
incorporated into production systems by an intentional process, such as vendor funding discussed earlier.   
 
Whereas development-stage actions are crucial, government must continue its role as the primary early 
adopter for high-end systems. This step is essential to reduce the risk for COTS-based vendors, as the 
capital cost of the largest high-end systems will not be borne by the vendors.  The government should not 
only procure the systems, but also actively use the innovations to address problems of agency interest in 
order to understand their utility.   
3.3. Other Challenges 

3.3.1. Parallel Processing 
Today’s COTS processors have inadequate support for parallel processing. Although a few key 
shortcomings could be addressed by the recommendations above, we believe a more strategic approach 
would be to diffuse the use of parallel processing across the broad computing market.  This step has the 
advantages of providing the benefits of parallelism to a greater audience, increasing the economic benefit 
to the nation, causing the mainstream markets on which the COTS manufacturers concentrate to be better 
aligned with the needs of high-end computing.   
 
While this statement is simple, its implementation is not. Current methods commonly used for parallel 
programming are not suitable for use by non-experts.  Much simpler interfaces for using parallelism must 
be devised. Without the motivation and expertise of the high-end computing community, this is unlikely 
to happen.  This indirect influence on the COTS vendors can be strategic, but it is likely to take ten to 
fifteen years to bear fruit.  
3.3.2. Scalable Software and Tools 
There are also several areas where work is required to increase the scalability of software and tools 
needed for efficient use of very-large-scale systems. Linux must scale to support systems with 10,000 
processors, and file systems also scale to support systems with exabytes (1018) of storage. Similarly, 
compilers are needed that can generate efficient code for the heterogeneous architectures described above. 
Lastly, programming interfaces with lower overhead than MPI must be devised to enable scaling very 
large numbers of processors. 
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4. CUSTOM ARCHITECTURES 
Peter Kogge, Chair 
University of Notre Dame 
 
Thomas Sterling, Vice Chair 
California Institute of Technology 
 
As others have noted, there are two strategies for achieving the high-end computer systems of the future: 
COTS-based systems and custom-enabled computer architecture. COTS-based parallel system 
architectures exploit the development cost and lead-time benefits of incorporating components—
including microprocessors, DRAM, and interface controllers developed for the mainstream computing 
market—in highly replicated system configurations. The working group considered the opportunities, 
technical strategies, and challenges to realizing effective computing performance across the trans-
petaflops regime through possible custom-enabled, high-end computer architectures.  
 
Custom-enabled architectures are designed expressly for integration in scalable parallel structures to 
deliver substantially higher performance, efficiency, and programmability than COTS-based systems, 
while requiring lower power and less space. Both approaches are likely to lead to petascale performance 
before the end of this decade, but may exhibit very different operational properties as they are deployed 
and applied to compute and data-intensive applications critical to national security and commerce.  
4.1. Custom-Enabled Architecture  
A custom, high-end computer architecture is one that has many of the following characteristics: 
 
• Its major components are designed explicitly to be incorporated in highly scalable system 

structures, and operate cooperatively on shared parallel computation to deliver high capability, 
short time to solution, and ease of programming. 

• It is balanced with respect to rate of computing, memory capacity, and network communication 
bandwidth. 

• It exploits performance opportunities afforded by device technologies through innovative structures 
that are not taken advantage of by conventional microprocessors and memory devices. 

• It incorporates special hardware mechanisms that address sources of performance degradation 
typical of conventional architectures, including latency, contention, overhead, and starvation. 

• It supports improved parallel execution models and assumes more responsibilities for global 
management of concurrent tasks and parallel resources, significantly simplifying programmability 
and enhancing user productivity.  

 
Even though specialized devices are key to the success of the strategy of custom architectures, COTS 
components are and should be employed where useful when performance is not unduly sacrificed.  
 
There is a wide range of possible custom parallel architectures, varying both in strategy and generality. In 
all cases, the objectives of their development are to: 
  
• enable the solution of problems we cannot solve now, or of much larger versions of problems that 

we are currently solving on conventional COTS-based systems through dramatic capability 
improvement;  

• deliver performance that is orders of magnitude better with respect to cost, size, and power than 
contemporary COTS systems at the performance scale for which they were designed; and  
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• significantly reduce the time to solution through both execution performance and enhanced 
programmability.  

4.1.1. Strategic Benefits 
By their nature, custom architectures promote a diversity of architecture by relaxing the constraints of 
system design imposed by conventional COTS microprocessors, and open opportunities for either 
alternative or point-design solutions to high-end computing problems that are far more efficient than 
currently possible. Their peak operation throughput and internal communication bandwidth for a given 
scale system may exceed equivalent attributes of conventional systems by one to two orders of 
magnitude, overcoming what are often referred to as the roadblocks for current technology. Overall 
system efficiency may be increased by up to an order of magnitude or more for some challenging classes 
of applications by means of hardware mechanisms devised expressly for efficient control of parallel 
actions and resources.  
 
Enhanced programmability is a product of reduced barriers to performance tuning and elimination of 
many sources of errors, thus simplifying debugging. By efficiently exploiting program parallelism at all 
levels through superior execution models, efficient control, and sufficient global communication 
bandwidth, custom architectures exhibit high scalability to solve problems of national importance that 
may be unapproachable by more conventional means. Custom architectures permit a computing capability 
with much greater density than conventional architectures, yielding potentially dramatic reductions in 
power, size, and cost. Lastly, custom architectures may be the only way to achieve sufficient reliability 
through fault tolerant techniques for systems beyond a certain scale, which may be crucial to realizing 
systems in the mid to high levels of petaflops scale. 
4.1.2. Challenges 
Despite the promise of custom-enabled HEC architectures, there are significant challenges to realizing 
their potential. Foremost is the fact that—while conventional systems may exploit the economy of scale 
yielded by the COTS components’ mass market—custom architectures, at least initially, will have only a 
limited market; therefore they will have fewer devices across which to mitigate development and non-
recurring engineering (NRE) costs. Therefore, the benefits achieved through custom design must be able 
to outweigh the higher per-chip price.  
 
The longer development time is also important because a larger part of the system needs to be designed 
from scratch than is the case for the COTS-based counterparts. One consequence of this is that technology 
refresh is less frequent for custom system architectures. There is also the challenge of user acceptance 
resulting from incompatibilities with standard platforms and the need to develop new software 
environments to address this. Difficulty in porting legacy applications, combined with the need for 
programmer training in the use of the new execution models and tools supported by the custom systems, 
can present additional barriers to both users and potential vendors. Lastly, any new system initially is 
unproven in the field and involves real risk to the earliest users. The introduction of any new and 
innovative custom system must overcome these challenges to be successful. 
4.2. Summary Strategic Findings 
From the wealth of facts and considerations derived from this important community forum, several key 
observations emerged from the consensus that should be considered in any planning of future federal 
programs for HEC procurement and development. The most significant ones are discussed below. 
4.2.1. Advantages 
Custom-enabled architectures offer significant advantages in performance and programmability compared 
with COTS-based systems of the same scale and deployment time for important classes of applications. A 
performance advantage of between 10X and 100X is expected through a combination of high-density 
functionality and dramatic efficiency improvements. A programmability advantage of twofold to fourfold 
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is possible through either the elimination or reduction of programmer responsibility for explicit resource 
management and performance tuning, and through advanced execution and programming models 
providing a reduction of sources of parallel programming errors. Significant advantages in performance to 
cost are expected to be yielded from the high-density packaging, low-power structures, and greater up 
time from intrinsic fault tolerance mechanisms. 
4.2.2. Near- and Medium-Term Opportunities 
Multiple technical approaches that offer significant promise for custom-enabled architectures have been 
identified that can be realized in the near and medium term. With necessary funding, these will accelerate 
computing capability and permit the United States to regain preeminence in the field. Proof of concept of 
more than one such innovative architecture is feasible within the next five years, and petaflops-scale 
computer systems can be deployed substantially before the end of this decade. 
4.2.3. Strategic Partnerships 
Exploiting these opportunities, so important to U.S. national security and commerce, will demand new 
partnerships among industry, universities, government laboratories, and mission agencies. To succeed, 
such alliances must be coordinated in such a way that the strengths of each institution complement the 
limitations of the others. Industry provides the principal skills and resources to manufacture complex 
computing systems, but lacks the motivation to explore high-risk concepts. University research groups 
devise and investigate innovative directions that could lead to future system types, but lack the resources 
or organization to carry them through to a useful form.  
 
The national laboratories have the expertise of using the largest high-end computers for major 
applications of importance to the national welfare, but do not develop the computing engines that they 
use. The federal agencies have both the requirements and the resources to enable future useful systems to 
be invented, evaluated, and (if warranted) deployed, but have at best only limited abilities to help steer 
commercial technologies to niche markets such as HEC. No one side of the community can realize the 
opportunities of future custom architecture alone and a new class of peer-to-peer partnering relationship is 
necessary to restart the HEC research pipeline with new ideas, faculty, and graduate students. 
4.2.4. Funding Culture 
The current funding culture is incapable of enabling or catalyzing the revitalization of the HEC industry 
and research community. The narrow short-term specifications, limited (even single-year) time frames, 
inadequate budget levels, insufficient guarantees to industry as friendly customers, and conflicting 
objectives across agencies have dissipated the means and will of the HEC community to attempt to 
provide anything but incremental advances to conventional COTS-based systems, leaving future 
innovation to foreign suppliers. The resulting soft money mentality has largely eliminated research 
incentive.  It has also been disruptive to national initiative compared to the Japanese, whose programs 
produced the Earth Simulator and are likely to deliver the first petaflops-scale computer within the next 
two years. 
4.2.5. Innovation in System Software and Programming Environments 
While it is the finding of this working group that the exploitation of custom architectures devised for the 
explicit purpose of scalable parallel computing is imperative to achieve the full potential of the foundation 
technologies, it is also clear that this alone is insufficient in meeting the goal. Both system software and 
programming environments must be developed to support and exploit the capabilities of the custom 
architectures. System software must be developed to provide the dynamic resource management 
anticipated by many of these architectures to improve performance efficiency and remove much of the 
burden from the programmers.  
 
Programming environments must be developed that capture and expose intrinsic algorithm parallelism for 
greater performance, and provide high-level constructs to eliminate low-level and error-prone detail to 
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minimize application development time. In addition, effective software means must be provided to enable 
rapid porting of legacy applications and libraries to maintain continuity of the user software base. The 
creativity of future software and programming models must match the creativity in custom HEC 
architecture. The required investment in software development is likely to exceed that of the custom 
architecture by at least fourfold (some would estimate it at tenfold). 
4.2.6. Application Requirements Characterization 
Future petascale architectures, whether custom or COTS-based, will run applications of substantially 
larger scale and complexity than those performed on current generation massively parallel systems and 
clusters. In some cases, entirely new applications and/or algorithms not even attempted in the current 
environment may become important users of future systems. Therefore, there is little (almost none) 
quantitative characterization of the actual system requirements of these future systems. Against the 
expected sources of user demand for such systems, it has not been determined with any certainty what the 
resource needs will be for memory capacity, network bandwidth, task parallelism control and 
synchronization, I/O bandwidth, and secondary storage capacity.  
 
It is a finding of this working group that comprehensive application studies need to be undertaken to 
establish quantitative system criteria sufficient to satisfy future agency demands for application 
performance. This is critical to the development of custom architectures, as it will establish capabilities, 
capacities, and correct balance for future system resources. These same results will benefit the 
development of COTS-based architectures as well. 
 
Coupled equally with this is the need to convert these requirements into real metrics that allow HEC 
customers to adequately decide what they want and how they know that they have received it. Peak 
floating point operations per second (FLOPS), for example, is not enough; neither is percent efficiency, 
certainly not the SPECfp benchmark. A current DARPA-sponsored effort has begun to explore these 
issues, but to do it correctly will involve a broader discussion across the whole community. 
4.2.7. Basic Research for the End of Moore’s Law 
It is expected that by 2020 the exponential growth in the density of silicon semiconductor devices, usually 
attributed to Moore’s Law, will have reached a plateau, and that a significant reduction in the rate of 
performance growth due largely to silicon technology may be experienced as early as 2010 or shortly 
thereafter. Beyond that period, continued growth in system performance will be derived primarily through 
brute force scale, advances in custom computer architecture, and incorporation of exotic technologies. In 
this latter case, architecture advances will be required to best assimilate such novel materials and adapt 
computing structures to their behavioral properties.  
 
Therefore, basic research needs to be initiated in the near future for custom architectures that will be 
prepared for the end of Moore’s Law and the introduction of alien technologies and models. It is expected 
that there is the potential for significant trickle-back to silicon-based semiconductor system architecture, 
even before the time when such innovations in architecture will become imperative. 
4.3. Technical Directions for Future Custom Architectures 
Despite a period of limited funding for HEC computer architecture research, a number of paths have 
emerged that hold real potential; these may provide gains of one to two orders of magnitude in several 
critical dimensions with respect to conventional architecture and practices using current or near-term 
technologies. Further, it is clear that these gains will continue to prevail, at least through the end of the 
decade, by means of architectural and complementing system software, benefiting proportionally from 
enhanced semiconductor technology improvements governed by Moore’s Law. This section documents 
key technical opportunities and potential advances that will be delivered by custom architecture research, 
should such work be adequately funded. 
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4.3.1. Fundamental Opportunities Enabled by Custom Architecture 
Custom architecture uniquely is able to exploit intrinsic and fundamental opportunities implicit in 
available or near-term underlying technologies through innovative structures and logical relationships. 
Some of the most important ones are suggested here. 
 
Function-Intensive Structures. The low spatial and power cost of VLSI floating point arithmetic and 
other functional units permits new structures incorporating many more such elements throughout the 
program execution and memory service components of future parallel system architectures. Organizations 
comprising 10X to 100X more functional units within a corresponding scaled HEC system are feasible in 
the near term, assuming logical control and execution models are devised that can effectively coordinate 
their operation.  
 
Enhanced Locality. Communication is a major source of performance degradation, whether global 
across a system or local across a single chip. It is also a major source of power consumption. Custom 
architectures present the opportunity—through innovative structures to address both scales of 
communication, even to a significant degree in some cases—to significantly increase the ratio of 
computation to communication. 
 
Exceptional Global Bandwidth. Custom HEC system architectures are distinguished from their COTS-
based counterparts by interconnecting all elements of the distributed system with exceptional global 
bandwidth and at relatively low latency. In so doing, custom architectures can significantly reduce several 
sources of performance degradation typical of conventional systems, including contention for shared 
communication resources, delay due to transit time of required remote data, and overhead for managing 
the global network. Depending on the system used as a basis for comparison, improvements can easily 
exceed 10X and approach 100X. Such global bandwidth gains not only improve performance; they can 
also greatly enhance the generality of high-end systems in supporting a wide range of application/ 
algorithm classes, including those that are tightly coupled, are communication intensive, and involve 
substantial synchronization. Increased bandwidth also improves architecture scalability. 
 
Architectures That Exploit Global Bandwidth. Bandwidth alone, although a dominant bounding 
condition on system capability, is insufficient to guarantee optimal global performance. In addition, 
custom architectures must incorporate means to support many outstanding in-flight communication 
requests simultaneously and, if possible, permit out-of-order delivery. This requires a combination of 
methods, including special lightweight mechanisms for efficient management of communication events 
and higher-level schema for representing and managing a high degree of computation parallelism. With 
high concurrency of demand and low overhead of operation, the raw exceptional capacity of custom 
global interconnection technology and network structures may be effectively exploited. 
 
Efficient Mechanisms for Parallel Resource Management. A repeated requirement governing many 
aspects of HEC system operation is efficient mechanisms for the management of parallel resources and 
the coordination of concurrent tasks, especially at the fine-grain level. Fine-grain parallelism, which is 
crucial to scalability of future petaflops systems, can only be exploited if the mechanisms responsible for 
their operation and coordination are fast enough that the temporal overhead does not overwhelm the 
actual useful work being performed. Custom HEC architecture has the unique advantage of being able to 
incorporate such hardware-supported and software-invoked mechanisms employed for global parallel 
computation.  
 
Advanced ISA. To facilitate the control of widely distributed and highly parallel HEC system 
architectures, the semantics of parallel operation needs to be reflected by the instruction set 
microarchitecture. This is only possible through custom design of the system and microarchitecture. 
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Otherwise, all responsibilities of managing concurrency of resources and tasks must be emulated through 
software, often requiring egregious use of synchronization variables and the overhead that entails. There 
are also classes of operations that—while not particularly important to general commercial computation 
and therefore not usually found as part of COTS microprocessor instruction sets—nonetheless can be very 
important to scientific/technical computing, as well as to the mission critical computations of defense- 
related agencies. Custom architecture may provide optimized instructions for these and other purposes 
that will never be available from COTS-based systems. 
 
Execution Models That Facilitate Compiler/Programmer Application. Beyond the specifics of 
instructions and components, the overall operational properties of a highly scalable, efficient, and 
programmable parallel computing system is governed by an abstract schema for defining the relationships 
among the actions to be performed and the data on which they are to operate. In an actual parallel 
computer, such a representation formalism is manifest as an execution model that determines the 
emergent behavior of the system components in synergy with support of the user application. The 
execution model establishes the principles of control and is supported by the instructions, mechanisms, 
and system structure. It enables the compiler and programmer to effectively employ the capabilities of the 
resources comprising the system. A COTS-based system is extremely limited in the choices of execution 
models because they fail to provide the needed underlying functionality. 
4.3.2. Examples of Innovative Custom Architectures 
The working group identified several concepts for innovative custom architectures and examined their 
specific characteristics and advantages. Each concept incorporates structures and strategies that exploit 
one or more of the potential opportunities previously discussed. An incomplete set of examples of 
possible innovative custom architectures is presented in this section. 
 
Spatially Direct-Mapped Architecture. An important strategy to achieve high density of functional 
units, low latency between successive operations, high computation to communication, and low power 
consumption is to enable structures of functional units and their interconnection paths to closely match 
the intrinsic control flow and data flow of the application kernel computation. There are several ways to 
do this, and the different strategies vary in their flexibility and efficiency. The “spatially direct-mapped 
architecture,” also referred to as “adaptive logic” or “reconfigurable logic,” comprises an array of logic, 
storage, and internal communication components whose interconnection may be programmed and 
changed rapidly, sometimes within milliseconds. The goal (and reason for the term “spatial”) is to allow 
us to compile not to a temporal sequence of ordered instructions, but to a spatial surface through which 
the data flow. 
 
Vectors. Vector processing exploits pipelining of logic functions, communication, and memory bank 
access to exploit fine-grain parallelism for efficient high-performance computation. It provides a class of 
efficient fine-grain synchronization, the potential of overlap of communication with computation, and 
reduced instruction pressure. While best at exploiting dense unit stride accesses, additional mechanisms 
permit rapid gather scatters across access patterns that vary more widely. The vector model has been 
successfully exploited since the 1970s, but new implementation strategies are emerging that will extend 
its capability through innovative architectures. 
 
Streaming. Streaming architectures are being proposed as an innovative strategy for providing a very- 
high-density logic architecture with full programmability. Wide and deep arrays of arithmetic functional 
units are interconnected with intermediate result data transiting through the array driven by a software/ 
compiler-controlled communication schedule. Very high computation to communication can be achieved 
for certain classes of algorithms, exhibiting high computation rate and low power. 
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Processor in Memory. Processor in Memory (PIM) architecture also exploits a high degree of logic 
density, but in a form and class of structure very different from those of vectors, streaming, and spatially 
direct-mapped architectures. Instead, PIM merges arithmetic logic units with memory in such a away that 
the logic is tightly coupled with the memory row buffers. With access to the entire row buffer, wide 
ALUs can be employed to perform multiple operations on different data within a single memory block at 
the same time. The total memory capacity of a memory chip may be partitioned into many separate units, 
potentially exposing greater than 100X memory bandwidth at low latency for data-intensive low/no 
temporal locality operation. 
 
Special Purpose Devices. Special purpose devices (SPD) are hardwired computational structures that are 
optimized for a particular application kernel. They take advantage of the same mapping attributes as 
spatially direct-mapped (reconfigurable) architectures. But they are able to exploit very-high-speed 
technology and provide much greater logic density to deliver significantly greater performance per unit 
area and lower power per computing action. SPDs such as systolic arrays have a long history of 
development and are particularly useful for post sensor and streaming data applications. The world’s 
fastest (unclassified) computer, Grape-6 [13], to be deployed within the next two years, is of this type, 
and it is likely that the first petaflops-scale computer will be a derivative of this architecture. An 
important limitation of SPDs is, as their name implies, that they are limited in the range of computations 
that any one of them can perform. 
4.3.3. Enabling and Exploiting Global Bandwidth 
Custom architectures may be distinguished from their COTS-based counterparts in part by enabling 
exceptional global bandwidth and its effective exploitation. Global networks for future HEC custom 
systems may exhibit bi-section bandwidth that is an order of magnitude greater than conventional 
systems, and may employ advanced technologies, including high-speed signaling for both optical and 
electrical channels as well as heterogeneous mixes, possibly using vertical cavity surface emitting laser 
(VCSEL) arrays. Optical switching and routing technologies will also be employed but it should be noted 
that routing and flow control are already nearing optimal capability. High-bandwidth, high-density 
memory devices might also facilitate fast communications. (The working group notes that the external 
bandwidth provided by the current generation of commodity memory devices is not anywhere near what 
they could be capable of using existing advanced signaling protocols, or what they already have available 
within the chip from the memory arrays.)  
 
From these base technologies, advanced network structures may be created. High-radix networks 
organized in non-blocking, bufferless topologies will be deployable within a few years using a 
combination of hardware congestion control and compiler-scheduled routing strategies. A number of 
advances in processor architecture are key to providing a sufficient traffic stream to utilize these future 
generation enhanced networks for high efficiency. Within the processor control of fine-grain parallelism, 
architectures incorporating streams, vectors, and multithreading provide the large numbers of 
simultaneous in-flight access requests per processor to make good use of such enhanced global network 
resources. Global shared memory and low overhead message passage mechanisms make lightweight 
packets feasible, providing additional concurrent global network traffic. Other techniques, such as pre-
fetch and pre-staging mechanisms as well as other methods of augmenting microprocessors to enhance 
additional requests, also contribute to the parallelism of communication and the effective exploitation of 
global bandwidth. 
4.3.4. Enabling and Exploiting Function-Intensive Structures 
Among the foremost opportunities for custom architecture are two related ones: the tremendous potential 
expansion of arithmetic functional units on a per die basis to increase peak floating point bandwidth by 
one to two orders of magnitude and, more importantly, greatly enhancing processor internal bandwidth 
and control locality. Spatial computation via reconfigurable logic is one such architectural method. 
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Streams that capture physical locality by observing temporal locality is another. New methods embodied 
at the microarchitecture level promise to enhance both locality and scalability of vectors. Processor-in- 
memory captures spatial locality via high-bandwidth local memory with low latency, and exploits high 
logic capability by enabling many active data/logic paths on the same chip. Chip stacking may further 
increase local bandwidth and logic density. General techniques of software management of deep and 
explicit register and memory hierarchies may lead to further exploitation of high-logic density. 
4.3.5. Efficiency Via Custom Mechanisms 
Efficient execution and scalability demand the ability to exploit fine-grain tasks and lightweight 
communication. Custom architectures provide a unique opportunity through the design of hardware 
mechanisms to be incorporated in the processor, memory, and communications elements. Such 
mechanisms can provide high-speed means of synchronization, context switching, global address 
translation, message generation, routing, switching, acquisition, and interpretation. Fast methods of 
memory management, cache handling, and security in a global parallel system can greatly reduce factors 
contributing to lower efficiency.  
4.3.6. Execution Models 
To effectively exploit the capabilities of custom architectures described in the previous sections, 
execution models must be devised that govern the control of the global parallel system in response to the 
computational demands of the user applications. A good model should expose parallelism to the compiler 
and system software, provide explicit performance cost models for key operations, not constrain the 
ability to achieve high performance, and provide an abstract logical interface for ease of programming. 
While no single execution model for, and supported by, custom architectures was selected, potential 
elements of such a future model of computation were identified based on the classes of parallel 
architectures being considered.  
 
The spatially direct-mapped hardware approach suggests its own paradigm; although in the limit, it could 
efficiently emulate many different such models. Low overhead synchronization mechanisms open up the 
prospect for a rich array of parallel constructs and the potential of new memory semantics. With the 
prospect of PIM-enabled architectures these can be further advanced, along with additional fundamental 
constructs such as message-driven computation, traveling threads, and active pages. Streams and threads 
extend the space of lightweight efficient parallelism that both support and are supported by future 
execution models. Such models must distinguish between local (uniform-access) and global (non-
uniform-access) memory structures and access policies. 
 
The programming models represented by Co-Array Fortran and UPC are good first steps. However, far 
more sophisticated execution models will be required to fully exploit the potential of promising new 
custom architectures. 
4.4. Open Issues 

4.4.1. Programming and HEC Architecture 
High-end computing is general purpose. The applications demanding HEC performance will use a wide 
variety of algorithms and data structures, both known and yet to be developed. Moreover, large 
simulations will frequently involve different sorts of models for different components, and different 
approaches for several time scales important to a calculation. Many applications will not match the 
massively parallel, data-parallel, or MPI models that are most efficiently supported by today's HEC 
machines. Therefore, future HEC architectures will need to support programming-in-the-large. It must be 
possible to put large programs together by combining components that are separately implemented. 
Component interfaces should be simple and independent of the mechanisms used internally. Programs for 
large simulations will often be so large that compiling in one step is not practical.  
 



         

 25  

Some of the proposed architecture ideas are not general purpose and/or do not explain how programming- 
in-the-large would be supported. A large-scale, high-end system must support the simultaneous execution 
of multiple jobs for different users with security. This is necessary to make efficient use of the expensive 
equipment. Any complete architecture proposal must indicate how this will be supported. Applications 
people have requested both programmer/compiler direction of resource allocation and dynamic resource 
management at runtime. For dynamic resource management, hardware support is essential and must be 
included in any complete proposal. In addition, a global shared address space is essential for 
implementing dynamic resource management that is sufficiently general. 
4.4.2. The Role of Universities 
In the quest to regain U.S. leadership in high-end computing, universities provide a critical resource. 
Academic institutions are a major source of innovative concepts and long-term vision. They keep the 
research pipeline full, in part because they provide the students who are engaged in formulating and 
testing new ideas and developing the skills required to pursue them. Universities have demonstrated their 
proficiency at conducting early simulations of conceptual hardware and software systems, and they are a 
major facility for developing prototype tools. While it is difficult to produce leading-edge integrated 
circuits, universities are one of the few venues for implementing first-generation prototypes of novel 
concepts.  
 
A current trend in computer science education is that students are no longer commonly exposed to 
massive parallelism in particular, and there is a significant decline in students of parallel computer 
architecture in general. In addition, there is atrophy in student interest in high-end computing. 
Universities provide only part of the solution and they have certain limitations. They do not do well in 
extending the work beyond the early research stage to the realm of robust products (there have been 
notable exceptions; e.g., BSD Unix). Due to the ephemeral tenure of student engagement, retaining teams 
is a challenge; this is aggravated by the difficulties imposed by soft money and the uncertainties of 
funding. This latter issue should be addressed as part of the overall strategy devised by the HECRTF. 
4.5. Roadmap 
Based on assumptions of sufficient and sustained funding, a general timeline of possible advances for 
research and development in innovative custom architecture can be projected using the concepts 
presented earlier as a basis for technical exploration. To this end, three epochs of five years each are 
considered beginning in FY05, the first fiscal year for which funding derived from this initiative may be 
anticipated. It is recognized that only funding for the first five-year period will be determined initially. 
But planning, even for this phase, requires a long-term perspective and vision to identify early basic 
research activities required in preparation for future conditions, such as the end of Moore’s Law or the 
introduction of new execution models or technologies.  
 
Three general classes of research and development are identified, including basic research, experiments 
and prototypes, and development toward initial deployment. At least some of the strategies under 
consideration can have a direct impact on systems deployed within the next five years, but will require 
relatively mature support software and friendly users. Additional work on these ideas will continue to 
refine and enhance the original approaches. The majority of architecture concepts presented will require 
advanced development and testing to evaluate their potential. Such experiments would result in 
prototypes in many cases, and yield detailed evaluation for risk reduction. 
 
For those ideas warranting further investment, continued funding would deliver deployable architectures 
within the second five-year epoch. As silicon-based semiconductor technology reaches its sunset phase, 
truly innovative ideas must be devised and pursued that, while more risky, may ultimately and entirely 
supplant conventional (or even near-term advanced) approaches towards the latter half of the second 
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decade. In preparation for addressing HEC beyond Moore’s Law, basic research will need to be 
undertaken even within the first five-year research phase. 
 
It should be noted that several companies are developing custom architecture roadmaps, including IBM, 
Cray, SGI, SRC, as well as some smaller concerns. While the focus is on architecture, concomitant 
software development must be pursued in tandem with all proposed architecture research. The following 
sections present a sketch of a roadmap for research and development of advanced and innovative custom 
architecture over the next fifteen years. 
4.5.1. Five Years (FY05-FY09) 
Deployable. Within the first five years, specific custom architecture elements will be deployable in HEC 
systems delivered to government agencies prior to the end of this decade. Advances in network 
technology can provide a new generation of high-bandwidth interconnection links, drivers, and routers 
exhibiting 10X or more bandwidth, and latencies below one microsecond across very large systems. New 
high-bit-rate wire channels, optical fiber interconnects, and high-radix routers together can deliver critical 
global bandwidth gains over conventional means in real-world systems by the end of the decade. This 
important improvement will come with no software changes required in order to be applied to mission 
codes. Such work is being performed at Stanford University, among other institutions.  
 
Symmetric multithreaded architectures will become ubiquitous within the next five years. However, there 
is an open question as to whether vendors will continue to emphasize single-thread performance, in lieu 
of supporting increased parallelism. Spatial direct-mapped architectures (i.e., adaptive logic) can be 
deployed as well for friendly customers, with significant advances in software and compilation strategies 
accomplished in this period. 
 
Prototypes and Experiments. Several advanced architecture concepts identified previously in this report 
could be developed and prototyped within the first five years of a new initiative. Such experiments would 
permit evaluation at sufficient depth to determine which specific concepts warrant investment during the 
second phase to bring them to a maturity level sufficient for deployment. Examples of architecture 
concepts for which substantial experiments could be performed in the first five years are: 
• QCDoC [13], a domain-specific architecture for high accuracy QCD calculations at Columbia 

University, 
• Merrimac Streaming architecture for high computation to communication processing at Stanford 

University, 
• The Berkeley Emulation Engine [6], another domain-specific architecture for immersed boundary 

method codes at UC Berkeley, 
• PIM-lite and MIND processor-in-memory (PIM) architectures for general-purpose, data-intensive 

(low temporal locality) computations at the University of Notre Dame and Caltech; and 
• Ultra-low-latency optical networks using fiber optics, at Columbia University. 
 
Basic Research and Exploratory Studies. Beyond the continued current trends of silicon-based 
semiconductor technology dictated by Moore’s Law, innovations in device structures and technologies 
and radical changes in architecture and execution models will require that fundamental basic research be 
initiated within the first five years of the new program. The early exploratory studies will develop 
inchoate concepts and push the edge of the envelope to provide the mission agencies with alternatives to 
avoid limits on capabilities in the early part of the second decade. Such research could include new 
computational models, nanotechnology, quantum dots, cellular automata, amorphous computing, and 
continuum computer architecture.  
 
The purpose of these studies would be to develop the basic concepts and relationships among these new 
technologies, structures, execution models, programming models, and application algorithms capable of 
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exploiting billion-way parallelism towards exaflops-scale computation. New architectures that are 
resilient, fault tolerant, and with decentralized control (e.g. distributed agents) would yield robust systems 
at scales where single point failure modes would limit sustained uptimes to seconds. New approaches to 
compilers and runtime systems as well as scalable I/O and operating systems would be undertaken, and 
would be strongly influenced by work on novel programming models. 
4.5.2. Ten Years (FY10-FY14) 
The second five-year epoch of a new funding initiative in custom computer architecture could prove to be 
an explosive renaissance in system design, capability, robustness, and usability. All prior prototypes and 
experiments that had demonstrated viability during the first five-year phase of the program could be 
deployed at mission agency sites. Such systems would provide sustainable performance for general 
applications in the 10 to 100 petaflops performance regime and exhibit competitive recurring cost 
compared with conventional techniques. They would also deliver far superior operational attributes for at 
least many important agency applications, assuming they were properly funded. Virtually all of the prior 
technology opportunities developed in the first phase will be deployable by the second phase in real-
world HEC systems. But initial adoption of such systems will be limited by drastic changes required in 
execution and programming models, although methods for transferring legacy codes to such radical 
systems will be a continued area of important research. Infrastructure will have to be established between 
academia and industry to encourage and enable the transfer of research results and their incorporation in 
deployed hardware and software systems. 
 
Innovative concepts, having gestated during the first five-year phase of the project, will be down-selected 
based on probable risks and potential rewards, with the most promising opportunities carried forward into 
the experimental phase of research with possible prototypes being implemented and tested as appropriate. 
For example, a continuum computer architecture prototype implemented with quantum dots fabricated 
using nanoscale technology might be prototyped to establish the feasibility of manufacture and 
application. It is this set of experimental systems that will set the stage for the post-Moore’s Law era to 
sustain the growth of HEC system capability, in spite of the flat-lining of conventional semiconductor 
technology. During this period, new concepts can be anticipated from academic research groups, and 
these will provide the basis for new basic research projects.  
4.5.3. Fifteen Years (FY15-FY19) 
With silicon scaling at sunset, systems developed and deployed during the latter part of the second decade 
will exploit revolutionary techniques in circuits, packaging, architecture, and software strategies. These 
truly revolutionary custom architectures will mesh with the end of the silicon roadmap and new non-
silicon technologies that will have been proven during the previous phases of the program. As these 
exotic systems are prototyped and deployed, alien in form and function but capable of near-exaflops 
performance, entirely new software environments for resource management and programming will have 
been devised and will be developed during this period. Ironically, these systems delivering one hundred 
thousand times the performance of current HEC systems may be smaller, consume less power, and take 
up much less space than even today’s terascale systems. We cannot know this part of the roadmap, but we 
can prepare for it and enable its extraordinary impact through basic research in the first phase.  
 
Regarding the basic research to be conducted in this end phase, we cannot even hazard a guess. For if we 
were able to speculate at all, we would be defining part of the research agenda for the next five years, not 
one of more than a decade from now. But we can be certain that with sufficient and sustained funding, the 
HEC community in the United States can provide the new ideas, technologies, and applications that will 
continue to drive this nation’s competitive position for defense and commerce as this century enters its 
adolescence.  
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4.6. Summary and Conclusions 
Custom-enabled HEC architecture provides a vital alternative to conventional COTS-based system design 
by enabling the exploitation of potential advantages intrinsic to available and near-term technologies, but 
demanding innovative hardware structures and software management models and methods. In many 
important metrics, custom architectures may deliver between 10X and 100X advantage over conventional 
COTS-based systems employing equivalent semiconductor technology including peak and sustained 
performance, performance to cost, power, size, and reliability. Custom architectures may efficiently 
support advanced execution and programming models that will both deliver superior sustained 
performance and greatly facilitate programmability, thus enabling systems of exceptional productivity for 
applications driven by federal agency missions. 
 
It is imperative that research in advanced, custom scalable HEC architecture be sponsored at an 
accelerated and continuous level to regain U.S. leadership in the field of HEC architecture, and provide 
the tools to secure dominance in this strategically critical technology for national security and commerce. 
To a large extent, the students we train in the first epoch will be the ones doing this final epoch work, and 
it is crucial that we give them the mindset, tools, and funding to be able to set a truly innovative and 
aggressive research plan fifteen years from now. 
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5. RUNTIME AND OPERATING SYSTEMS 
Rick Stevens, Chair 
Argonne National Laboratory 
 
Ron Brightwell, Vice Chair 
Sandia National Laboratories 
 
The working group considered the principal functional requirements of operating systems and runtime 
systems for high-end computing systems likely to be available by the end of the decade. The group also 
explored the research needed to address these functional requirements. Lastly, the group discussed the 
role of open source software and the need for testbeds to enable broad community participation in 
research and development and to support outreach and education. 
 
To focus the discussion, the working group made the following general assumptions. First, we assumed 
that future systems would be substantially larger than current systems. Hence, the scalability target for 
analysis considered systems several orders of magnitude larger than today’s largest systems (i.e., one 
hundred thousand to one million nodes). We also explicitly targeted both COTS-based systems and 
systems made from custom logic, including commercial systems. At each point, we considered current 
technologies, the limitations of current approaches, leverage that might be obtained from open source 
software technologies, and new ideas needed for breakthroughs. Where possible, we indicate those 
recommendations that could be pursued in the near term and those that are longer term due to either 
technological unknowns or problem difficulties. 
 
The working group considered a broad range of topics relating to runtime and operating systems for high-
end computing systems, including operating system and runtime Application Programming Interfaces 
(APIs), high-performance hardware abstractions, scalable resource management, file systems and data 
management, parallel I/O and external networks, fault management, configuration management, operating 
system portability and development productivity, programming model support, security, operating system 
and systems software development testbeds, and the role of open source software. 
5.1. Recurring Themes  
The working group noted the limitations of UNIX (Linux and other UNIX variants) for HEC. Unix has 
been the technical world’s operating system of choice for nearly thirty years. While it has served the 
community well, its very design point and set of assumptions are increasingly at odds with the needs of 
high-end computing. Today, the operating system and runtime research community is almost entirely 
focused on delivering capability via commodity-leveraging clusters—this may not be the proper balance 
for the future.  
 
We believe the operating system and runtime service models will soon merge. We also believe that 
increasing performance feedback for dynamic adaptation, including increasing coupling among operating 
system, runtime, and applications, is an important trend. Increasing the transparency (i.e., exposing and 
making visible) of those aspects of the software and hardware that impact performance is increasingly 
important if we are to manage very-large-scale systems effectively. 
 
We also believe many groups will opt for a minimalist approach to operating system and runtime 
services, whereas others will need operating system support that is more fully featured.  Future systems 
should be capable of supporting both models. There may also be opportunity for improving operating 
system and runtime performance via hardware support for certain features and functions (e.g., fault 
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management and resource monitoring). We also believe operating system and runtime research should be 
more closely coupled to hardware research in the future.   
 
Lastly, it was very clear that the current lack of large-scale testbeds is limiting operating system and 
runtime research for the HEC community. Such testbeds can provide the broad research community with 
access to flexible testing environments and scalability research platforms. These testbeds should be 
available to university groups, national laboratories, and commercial software developers. 
5.2. Operating System Interfaces 
It seems clear that the POSIX APIs used on most operating systems will be inadequate to support future 
large-scale HEC systems. In particular, the overhead of some POSIX operations varies widely across 
systems, leading to unexpected performance problems when moving applications from one system to 
another. Some POSIX operations also require a heavyweight operating system on each node, which is 
inappropriate for systems composed of large numbers of lightweight processing elements. The need to run 
current applications on future HEC systems requires that these systems continue to support a POSIX 
compatibility mode, but this need not be the primary API.  
 
An ideal operating system API would have performance transparency so that the cost of every operation 
is visible to the programmer, compiler, or code generation system. Such an API should also be 
sufficiently modular to support HEC systems that do not run a full operating system on every node. 
Future applications will still require common APIs across operating systems for application portability; 
vendor-specific APIs are not acceptable. Because there has been little work on common, high-
performance, non-POSIX APIs, we recommend a research initiative to develop such APIs. In the longer 
term, a new operating system API must be standardized and implemented by HEC vendors. 
5.3. Hardware Abstractions 
Historically, one operating system role has been abstracting the underlying hardware, providing a virtual 
machine that either contained additional features or hid hardware idiosyncrasies. The main drawback of 
virtualization is that it hides key features of the hardware that the application may be able to exploit for 
improved performance.  
 
As an example, consider two programming models, one based on shared memory using threads and the 
other based on MPI. In the threaded model, the operating system can hide the number of actual processors 
from the application by multiplexing threads on the hardware. This simplifies the programming model 
and enables support for dynamic allocation of processing resources as the number of threads changes. The 
drawback is that multiplexing threads on processors can lead to high overhead for context switching and 
cache thrashing. In MPI programming, it is common for the number of MPI processes to equal the 
number of processors on which the program is running. However, when debugging, it is common to place 
a large number of processes on a small number of processors. The user must make an operating system 
call to determine the current execution mode. 
 
Lastly, as hardware becomes more varied, the opportunities for abstraction increase. For instance, it is not 
obvious that an operating system should hide the number of PIM processors or the details of an FPGA 
extension. If the hardware changes or is unavailable, what behavior is appropriate? Additional research is 
needed to identify the appropriate virtualization and abstraction models. These models must elide 
unnecessary detail while also providing performance transparency—the ability to optimize for hardware 
details where needed. 
5.4. Scalable Resource Management 
Operating system services for resource management must adapt to the usage model of high-performance 
applications. In particular, cluster-level resource management should schedule cluster resources in an 
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optimal way for parallel application performance. The cluster resource manager should map application 
processes and threads onto the system in a way that optimizes message traffic, given knowledge of 
application messaging dynamics and network topology. Similarly, node-level resource management 
should provide a minimal set of operating system services that maximizes the resources available for 
application use.  
 
As an example of intelligent resource management, processes that generate large volumes of message 
traffic should be placed nearby on the network to minimize message latency.  More generally, a cluster 
resource manager should schedule network and I/O resources (to disk or archival storage) to avoid 
resource contention, provide predictable performance, and avoid ailing nodes. Lastly, the time needed to 
allocate resources and launch a large parallel job should scale logarithmically with the number of 
processes.  
 
Typically, scientific applications do not share node resources, and they are sized to utilize all of the 
node’s available computing resources (i.e., memory, processors, and network interfaces). Thus, 
sophisticated operating system services designed for commercial use (e.g., such as virtual memory 
management and time-sharing) are not appropriate for high-end computing. Rather, it should be possible 
to manage a node’s available memory in application space. NUMA memory systems should minimize the 
distance between memory placement and the processor on which the process/thread is running.  Once 
memory is allocated, it should not move in the non-time-shared environment of node-level HPC.   
 
Operating systems for high-end computing must also manage shared resources. Examples include files 
(long-lived data) and the communication network in systems with multiple, concurrently executing 
applications. Where possible, this protection should be implemented in hardware. When hardware 
protection is not provided, the needed protection must be implemented in software.  Currently, high-end 
systems do not provide adequate hardware to control access to the communication fabric; these systems 
require a software layer to provide the necessary access control.  In contrast, the communication network 
of the planned IBM Blue Gene/L system can be partitioned to reflect the node allocation when an 
application is launched. 
 
Lastly, applications should have the flexibility to manage resources on their behalf when such access does 
not compromise inter-application security. Otherwise, performance-sensitive applications incur 
unnecessary complexity and overhead to implement their own version of resource management.  In these 
cases, performance is substantially worse than if the operating system implemented the right policy.  
5.5. Data Management and File Systems 
We believe legacy, POSIX I/O interfaces are incompatible with the full range of hardware architecture 
choices contemplated. The ordering semantics for multiple, simultaneous writers are particularly onerous 
on a distributed memory system that lacks implicit memory synchronization.  Additionally, the interface 
does not fully support the needs for parallel support along the I/O path. For instance, implementations 
leverage non-standard extensions and overload to communicate striping needs and strided access. 
 
Any file system suitable for use on high-end systems must be extremely scalable. The distributed, 
cooperative problem-solving approaches assumed by clusters and multi-program, parallel platforms have 
ignored the potential processing capability within the I/O system. An alternative, appropriate operating 
system API should be developed for high-end computing systems. However, such an alternative should 
not deviate from POSIX except where POSIX functionality limits performance or programmability. 
 
Data management systems should be developed that leverage enterprise-wide authentication schemes and 
provide interoperable authorization mechanisms. They should recognize the differences in capacity and 
performance required by high-end systems and workstations, while functioning appropriately in the 
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presence of both. In general, they should promote sharing via primitives to access data across 
geographically distributed administrative domains.  
 
Lastly, the concept of a distributed approach to problem-solving could be extended to include the 
hardware closest to the storage. Intelligent storage services such as active disks could yield significant 
throughput enhancements by selective filtering, deep pipelines, providing translations, or other small pre- 
and post-processing duties. Research is also needed to explore appropriate methods for decomposing 
metadata services to enable scalability. 
5.6. Parallel and Network I/O 
Some classes of future HEC systems will have hundreds of thousands or millions of processors.  High- 
speed, specialized interconnect fabrics will provide communications among processors or groups of 
processors. In such systems, each processor may not have an external network or I/O channel interface. 
Instead, many processors, possibly thousands, will share a common external network or I/O channel 
interface. Operating systems and/or runtime systems will be required to share, schedule, and control these 
resources. There are several possible ways to provide this service, including gateway nodes, proxies, 
routing, direct protocol conversion, protocol layering, and multi-protocol switching technology.  
 
Because these future high-end systems may have thousands or even millions of external I/O or network 
channels and some of the I/O resources may be geographically distributed, Grid and network technologies 
may be needed for remote resource management, including security as well as scalable and dynamic 
parallel use of external network and I/O interfaces. 
 
Hence, research is needed on mechanisms that can provide suitable shared, external I/O and general 
network interfaces for HEC systems. Because many HEC sites currently have this problem, some 
coordination of these ongoing research activities would be helpful to collect a body of useful information 
to determine if there are general answers. Over the longer term, perhaps general research into aligning 
internal mesh and external I/O and network interface protocols is in order.  Additionally, research into the 
proper way for HEC systems to interface with the Grid services is needed, especially research to validate 
the appropriateness of solutions at scale. Lastly, scheduling bandwidth, quality of service, and fairness are 
also issues to consider. 
5.7. Fault Management 
Handling faults is critical to the future of high-end computing, and they can occur in many different 
system components: memory, interconnects, disks, and nodes. To manage such faults, integrated solutions 
involving detection/prediction recovery are needed.  Some solutions exist today for handling memory, 
interconnect and disk faults. Moreover, applications-level mechanisms (e.g., check-pointing and 
recovery) are used to handle node faults. However, as system sizes increase to 100,000 nodes and beyond, 
novel scalable and high-performance solutions are needed to manage faults and maintain both application 
and system operation. 
 
The working group recommends several, concurrent research tracks for efficient and effective fault 
management in large-scale, high-end systems. First, efficient schemes, including operating system 
mechanisms and architectural solutions, are needed for fault detection and prediction, diagnosis, and 
recovery. Second, novel schemes such as replication and ubiquitous virtualization must be included in the 
runtime system to handle faults gracefully, with little impact on performance. Lastly, integrated solutions 
with configurable management schemes are needed to reduce the cost of detection and recovery, while 
also minimizing performance degradation. 
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5.8. Configuration Management 
Current configuration management tools for high-end systems are inadequate in several ways. First, the 
tools do not scale well to systems with hundreds or thousands of nodes, and there is little prospect they 
will perform well on systems with tens of thousands or millions of nodes. In the event of failures during a 
system update, an inoperable system may result or the state of the nodes of the system may be unknown. 
The failure of an update may require extensive individual installation and/or repair of software for each 
node that was incorrectly configured. These shortcomings should be addressed if large-scale systems are 
to be manageable in a cost-effective, productive way. 
 
We recommend that system software release and configuration management tools be able to operate 
effectively at both moderate and very large scales. We further recommend that reliability be a major 
concern during the development of systems release management software. In the event of a failure of all 
or some of the nodes during a systems software upgrade, the cluster should be in an operational state. It 
should be possible for the systems manager to determine which nodes have been updated and which have 
not; and it should be possible to restart the upgrade operation from where the operation was interrupted.  
 
Nodes that were unavailable during the upgrade should automatically update themselves when they are 
brought back online. Furthermore, it should be simple for a manager of a very-large-scale system to revert 
to a previous configuration or move forward to a test configuration of the systems software on all or any 
subset of the nodes.  
 
In the short term, reliability should be favored over speed and scalability. It is important to develop 
capabilities such as journaling or multiphase commits to ensure that an operable system results from an 
upgrade operation. It should be possible for all nodes to maintain an inventory of their state and to ensure 
that they are up to date at boot-time or when they are brought into service. After these basic operations are 
developed, scalability of these operations needs to follow shortly thereafter. In the longer term, 
standardized interfaces for configuration management should be developed to allow for different 
packages that comprise a “system” to be integrated and managed with the same tool set. We may need to 
deviate from the file-based Unix approach. 
5.9. Operating System Portability 
As has been noted repeatedly, the next generation of high-end systems will be composed of large numbers 
of components—compute nodes, storage nodes, administrative nodes, switches, monitors, and 
management devices—each with its own local processor. It is highly desirable that these components 
have common features implemented using a shared code base. The primary distinctions among the 
components will be their degree of customization with respect to their host applications, and the set of 
devices controlled by their local processor. Components may also be customized with special-purpose 
hardware, such as FPGAs. 
 
To the degree that the component control framework and shared features (such as RAS, firmware loading 
and network interfaces) can be made common, high-end systems will benefit from reduced costs and 
increased productivity. This core operating system will then provide the basis for the runtime platform for 
each component.  Shared code is also likely to be more reliable as well. 
 
One of the Linux operating system’s strengths is the wide variety of hardware device-driver code 
available.  One obstacle in the development of new or improved operating system software is the need to 
modify or recreate a variety of device drivers. Device drivers are non-portable for several reasons. First, 
the context in which they are embedded (e.g., a network protocol stack such as Bluetooth) is insufficiently 
parameterized to allow the substitution of alternate drivers. One example of this was the proliferation of 
entire TCP/IP stacks on Windows systems before the movement of the TCP/IP stack into the operating 
system. Second, the context in which the driver executes differs across operating systems, and varies over 
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time within an operating system.  For example, the memory management functions within the Linux 
kernel changed in the midst of version 2.4; drivers that worked in 2.4.3 no longer worked in 2.4.9. 
 
One can view the role of the device driver within a protocol stack (or any use of the driver) as the 
provisioning of an actual strategy (the driver implemented as a module) into a parameterized module (the 
network stack). This requires a well-defined interface with well-designed architecture, along with the 
protocols for how the modules communicate and interact. The adoption of such a “strategy pattern” is 
useful at many levels within the operating system software for HEC. For example, consider a job- 
scheduling system that is parameterized with a module providing specialized node allocation based on 
known network characteristics. The scheduler itself could then be independent of the actual network 
topologies.  
 
Modularity is not a new issue, either in the design of systems or programming languages.  What is needed 
is to find and use efficient and effective techniques for developing and documenting parameterized 
operating system modules, while minimizing the performance overhead incurred. This approach does not 
require object-oriented inheritance, but only a distinction between interface and implementation, along 
with the ability to bind alternative implementations. 
 
We recommend a review of current driver implementations to abstract both execution context 
requirements and to derive interface requirements. We must also develop processes to encourage the 
adoption of clean, well-defined, and long-lived models for device interfaces. Concomitantly, we must 
support and encourage the development of a common runtime execution platform that can be used as a 
basis for all processor-equipped devices within a large system, supporting common services such as RAS, 
monitoring, or configuration management.  
 
We must also encourage the definition and adoption of parameterized modules throughout the design of 
all operating and runtime systems. Moreover, we must invest in the use of modular programming 
languages for implementing operating systems, including the development and deployment of tools 
needed to improve the runtime performance of parameterized modules. For example, a binding tool can 
be used to eliminate performance overhead when the parameterization is set during system link time. 
5.10. Operating System Security  
Several definitions are in order before discussing operating system security. Multilevel security (MLS) 
processes information with different classifications and categories that simultaneously permit access by 
users with different security clearances and deny access to users who lack authorization. Second, 
authentication is the process whereby an entity proves its identity to another entity. Lastly, authorization 
is the set of access rights granted to a user, program, or process. It is also the operational act of allowing  
subjects to access a resource after determining that they hold the required set of privilege attributes. 
 
Almost all operating systems currently in use rely on a security model based on the original Unix security 
model—resources are accessed via processes. Resources are represented as files (devices even look like a 
file), and they have an attribute consisting of a user name and group name. Each resource has a 
permission mask, which defines access permissions (read, write, execute, and others) for the user name, 
group name, and all others (world). Processes are authenticated via an initial process (usually login), 
which sets the user and group identifier of the process as well as a set of other groups. From that point, 
the process attributes allow access from the process to any resource that matches those attributes.  
 
In Unix, processes cannot re-authenticate and change authorization; the only mechanism for a change in 
authorization is the setuid system call, a blunt tool indeed. Processes cannot present different 
authentication data to different resources to gain different authorizations. Resources are not active in 
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Unix; they are passive, and hence cannot engage in authentication or authorization activity with a client. 
Moreover, resources cannot possess attributes outside the simple user/group/world model.  
 
The file system space of a Unix system can be described as a “space of names”—a name space. Unix 
processes augment the name space via the Unix mount system call. When a process modifies the name 
space of a machine, the modification is global—all processes on the system will see the modification. In 
programming language parlance, mounts are not free of side effects—they modify the global state of the 
system, not the local state of the process. Unintended sharing can be the result, violating the goal of 
confinement.  
 
Lastly, the Unix user-naming mechanism is outmoded. Users are named, and permissions determined, by 
an integer number. There is obviously no possibility of gaining agreement on user name to number 
mappings on a global scale; it is hard enough in a single organization. In Grid environments, this integer 
user ID (UID) presents problems that have been widely discussed. The designation of a user by an integer 
also causes problems in accessing file servers such as NFS, since the UIDs must be kept consistent across 
the client/server boundary, and such consistency is again unachievable on the Grid. The entire file system 
layer of Linux revolves around the UID mechanism and is not easily changed to some other mechanism. 
Modifying Linux to use names, not UIDs, would require an extensive rewrite of the kernel, GNU library, 
and GNU tools, as well as almost all extant network file systems.  
 
Finally, Unix operations rely on root as a privileged user. For the root user, no operation is off limits or 
out of bounds. Privilege checks are bypassed for the root user. The root user can attain the privileges, via 
setuid, of any other user. Most Unix exploits revolve around spoofing programs running as root into 
doing something that violates the security on the system. The existence of the root user will, inevitably, 
reduce the security of the system. Removing root is impossible because so many basic Unix mechanisms 
rely on the existence of root.  
  
The lack of sophisticated permissions in Unix limits the ability to implement strong security and multi-
level security. Because resources are passive not active, they cannot engage in more sophisticated 
authentication transactions. Because resources have simple permissions, the increased sophistication 
required for MLS and more fine-grained access controls is not possible. Because name spaces are global, 
unintentional leakage of information (“side effects”) is possible. The limitations of integer UIDs are 
pervasive, although most Unix-like operating systems use them for high-end systems. The structure of 
Unix is difficult and in some cases impossible to modify, since many of these properties are structural. 
 
Existing Linux extension efforts do address some of these problems. Linux will soon have Access Control 
Lists (ACLs), which will enhance the protections provided by the file system. Since Linux version 2.4.19, 
Plan 9-style private name spaces have been implemented on Linux in a limited way. The V9FS project 
(http://v9fs.sourceforge.net) builds on this capability by providing 9p2000 clients and servers, allowing 
processes on Linux to augment their name spaces with strong authentication tools. This separates 
authentication and authorization from the protocol, moving these low-performance bottlenecks out of the 
main file I/O code. In the end, however, the Unix security model is not extensible. If nothing else, the use 
of integer UIDs and the existence of the root user would be sufficient to require replacement of the Unix 
model.  
 
What new models might be used in future operating systems? Several possibilities are identified, such as: 
making resources active instead of passive; allowing processes to reauthenticate as needed for different 
resources; allowing processes to present different authentication, and gain different authorization, for 
different resources; providing a richer and more fine-grained access control model; supporting private 
name spaces; and better support for Grid requirements by eliminating (e.g., integer UIDs and the 
privileged, or root, user). 
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There are two operating systems, Eros and Plan 9, that provide a proof-of-concept that such ideas can be 
achieved. Eros [25] (http://www.eros-os.org/) is a new, capability-based operating system. In Eros, access 
to resources is controlled by capabilities attached to the resource. Resources are passive. We cannot yet 
tell whether integer UIDs are completely gone, but integer UIDs are inconsistent with the use of 
capabilities, so we are guessing that they are. Root has no meaning in a capability-based system; we have 
not yet audited the Eros code, but we believe there is no analogue to the Unix root user.  
 
Plan 9 (http://plan9.bell-labs.com) provides a very different system model than either Unix or Eros. In 
Plan 9, resources are active. Processes cannot change their identity once it is established, but they can 
present different authentication, as needed, for gaining access to resources. Plan 9 invented the concept of 
private name spaces. Plan 9 separates authentication and authorization from operations on the resource, 
which is desirable for HEC. Plan 9 does not support fine-grained access to the resources; it has not been 
missed due to the way private name spaces work. Plan 9 has no root user.  
 
It is clear that the Unix process and resource model has limitations that affect HEC environments, and it is 
not sustainable for the long term. Ongoing changes to Linux, via the provision of ACLs, private name 
spaces, and V9FS, show that in the short term some of the problems may be ameliorated. It is also wise 
not to underestimate the willingness of the Linux kernel team to make far-reaching changes to the Linux, 
as the 2.5 and 2.6 kernels show. Nevertheless, there is no clear solution to some of the fundamental 
problems, such as the existence of the root user. The two example systems presented show that very 
different models are possible and viable (Plan 9 is used widely in internal product development at 
Lucent).  Research into new security models could lead to resolutions to these problems.  
 
Hence, we believe that new research is needed to explore alternate security models. This should explicitly 
include support for operating system models different from Unix. 
5.11. Programming Model Support  
The predominant parallel programming model currently in use is based on message passing using MPI, a 
fifteen-year-old technology. MPI relies on a library of routines to manage low-level details of parallel 
execution, and it requires the developer to partition an application into many independent cooperating 
processes to exploit process-level parallelism. This imposes a considerable intellectual burden on an 
application developer. Although MPI programs are portable across many execution platforms, the 
development costs are high.    
 
Two alternative programming systems, Co-Array FORTRAN (CAF) [22] and Unified Parallel C (UPC)  
[9], are worthy of concerted experimentation. These promise ease of use and reuse, as well as gains in 
programmer productivity and the possibility of high performance. Other possible advantages include 
increased tolerance for processor latency, reduced overhead through single-sided communication, and 
shared name spaces. 
 
Additionally, application development productivity can be enhanced through better compilers, debuggers, 
and performance analyzers. As future processor architectures introduce greater internal concurrency and 
deeper memory hierarchies, compilers will be required to better insulate the programmer from such 
details. Similarly, debugging and performance analysis can enhance productivity through automated or 
semi-automated tools. The runtime environment need to be enhanced by new or improved tools described 
above. The programming environment offering CAF and UPC may need additional capabilities from the 
operating system for sophisticated management of memory. 
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6. PROGRAMMING ENVIRONMENTS AND TOOLS 
Dennis Gannon, Chair 
Indiana University 
 
Richard Hirsh, Vice Chair 
National Science Foundation 
 
The charter of this group was to address programming environments for legacy codes and alternative 
programming models to maintain the continuity of current practices, while also enabling advances in 
software development, debugging, performance tuning, maintenance, interoperability, and robustness. 
Our goal was to identify key strategies and initiatives required to improve time to solution and ensure the 
viability and sustainability of HEC systems by the end of the decade.    
 
The working group considered several possible approaches to improving future programming 
environments.  These ideas ranged from innovations that support incremental evolution of existing 
programming languages and tools, consistent with portability of legacy codes, to innovative programming 
models that have the potential to dramatically advance user productivity and system efficiency/ 
performance.  
6.1. Key Observations 
The key findings of the group can be summarized as follows. The most pressing scientific challenges of 
our time will require application solutions that are multidisciplinary and multi-scale. The complexity of 
these systems will require an interdisciplinary team of scientists and software specialists to design, 
manage, and maintain them. Accomplishing this task will require a dramatic increase in investment to 
improve the quality, availability, and usability of the software tools that are used throughout the lifecycle 
of the application, which will span many generations of HEC platform architectures. 
 
The strategy for accomplishing these goals is not complex, but it requires a change in attitude about 
software funding for HEC. Software is a major cost component of all modern, complex technologies, but 
the tradition in HEC system procurement is to assume that the software is free. Mission critical and basic 
research software for HEC is not provided by industry because the market is so small and the customers 
are not willing to pay for it.  We need federally funded management and coordination of the development 
of high-end software tools for high-end systems.  
 
Funding is needed for basic research and software prototypes, and for the technology transfer required to 
move those prototypes that are successful into real production-quality software. We need better ways for 
interdisciplinary teams to collaborate and to integrate well-tested software components into working 
systems. It is urgent that we invest in building interoperable libraries and software component and 
application frameworks that simplify the development of these complex HEC applications. These 
technologies show great promise in revolutionizing HEC programming methodology to improve time to 
solution. It is also essential that we invest in new, high-level programming models for HEC software 
developers that will improve productivity, and create new research programs that explore the 
hardware/software boundary to improve HEC application performance. 
 
Structural changes are needed in the way funding is awarded to support sustained engineering. We need a 
software capitalization program that resembles the private sector in its understanding of the software life 
cycle.  One approach to coordinating federal effort in this area would be to establish an institute for HEC 
advanced software development and support, which could be a cooperative effort among industry, 
laboratories, and universities.  



         

 38  

 
Lastly, a new approach to HEC education is also needed, including a national curriculum for high- 
performance computing. We need continuing education that will enable us to build interdisciplinary 
science research. To enable an improved educational agenda, we need a national HEC testbed for 
education and research that will provide both students and researchers unfettered access to the next- 
generation HEC systems. 
6.2. The State of the Art and an Evolutionary Path Forward 
The term “legacy software” refers to computer programs that embody the state of the art of our scientific 
understanding. Like our scientific understanding, legacy codes are seldom static; they are constantly 
being modified to reflect the evolution of our understanding. Consequently, it is our duty to maintain 
them on each new HEC platform. Unfortunately, the core modules of legacy code are written in old 
programming languages, and they are often designed using outdated software construction principles.  To 
sustain them, new modules are carefully grafted on or parts of them are manually restructured to make 
them work on new architectures. New approaches are needed to help manage the “life cycle” of these 
evolving applications.  
 
As our scientific understanding grows, new legacy programs continue to be created. In addition, 
algorithmic advances have been required to solve more complex multi-scale problems.  These new 
programs use a variety of programming tools, including FORTRAN (66 through 95), C/C++, and special 
interpreted scripting languages like Python and MATLAB.  Often, new applications require a blend of all 
of these and, to get performance on parallel machines, it is necessary to use libraries like the Message 
Passing Interface (MPI) and explicit threading, or language extensions like OpenMP and High-
Performance FORTRAN (HPF). Currently, MPI is the most common high-performance programming 
tool. For many computations, MPI leads to excellent speedup, but in other cases, it requires casting 
problems and algorithms into an unnatural form where performance scales poorly. 
 
Many researchers once hoped that compiler-based, automatic parallelization would solve the problem of 
scaling sequential software to massively parallel computers. While we have made great strides, a 
complete solution is not in sight.  However, automatic parallelization has proven to be an essential tool 
for optimizing procedure bodies, and for generating the low-level parallel code that is executed on 
modern processors. One way to make it easier for the compiler to generate parallel code is to use 
programming language extensions that allow the applications developer to express “top-level” parallelism 
that can be used by the compiler. These new language extensions can be considered an important 
evolutionary path forward. They include Co-Array FORTRAN, UPC, Adaptive MPI, and specialized C++ 
template libraries.  
6.2.1. Software Productivity 
Clearly, progress is very slow in evolving high-end software practices to new languages and 
programming models. The rest of the software industry moves much faster in the adoption of new 
software development paradigms. Why is high-end system software development different? Scientists and 
engineers continue to use older approaches because they are still perceived as the shortest path to the 
goal: a running code. Many of the tools are well suited to the traditional model of one-programmer-one-
program. However, our high-end system applications are rapidly evolving to multi-language, 
multidisciplinary, multi-paradigm software systems that are built by distributed, collaborating teams.   
 
The complexity of these applications will soon rival that of large projects at companies like Oracle, SUN, 
or Microsoft, where software engineering standards, practices, and tools are major corporate investments. 
High-end computing has been largely deprived of participation in the revolution in software tools. When 
tools have been available, centers cannot afford to buy them. When they are available, they are not 
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available on all the requisite HEC platforms. For example, industrial-strength “build, configure and 
testing” tools are not available for most HEC applications/languages.   
 
Near-Term Solutions. A major initiative is required to improve the software design, debugging, testing, 
and maintenance environment for HEC application software systems. We need portable software 
maintenance tools across HEC platforms. We also need a rapid evolution of all language-processing tools, 
and we need complete interoperability of all software life-cycle tools. 
 
Performance analysis should be part of every step of the life cycle of a parallel program. For example, 
feedback from program execution can drive automatic analysis and optimization of applications.  
Developing extensible standards for compiler intermediate forms and object-file formats can facilitate 
interoperability. As an example, Microsoft provides excellent interoperability for all of its languages and 
tools.  The HEC world is, by its nature, far more heterogeneous than the monolithic world of Microsoft, 
making our problem much more difficult.  However, our long-range goal should be complete “roundtrip 
engineering” of HEC software (i.e., the ability to take a specification of a computation and automatically 
convert it to executable form and then back again for design changes to improve either the science or the 
performance). 
 
Evolution of HEC Software Libraries. The increasing complexity of scientific software 
(multidisciplinary and multi-paradigm) has other side effects. Libraries offer an essential way to 
encapsulate algorithmic complexity, but parallel libraries are often difficult to compose because of low-
level resource conflicts. Older libraries often require low-level interfaces that do not exchange more 
complex and interesting data structures. These problems have led researchers in some important new 
directions.  
 
Software component technology and domain-specific application frameworks provide a way to put multi-
paradigm parallel programming within reach. These tools provide an approach to factoring legacy into 
reusable components that can be flexibly composed. The framework handles resource management while 
components encapsulate algorithmic functionality. These systems provide for both interface 
polymorphism and system evolvability. They also allow us to abstract the hardware/software boundary so 
specialized hardware can replace a software component without changing the rest of the application. In 
general, these component systems approaches allow better language independence/interoperability. 
Testing and validating applications are made easier because we can test individual components separately 
before they are composed into a larger system.  We can also ensure components can be trusted, and, if the 
framework that hosts the components is well designed, we have more trust in the entire application. 
 
Interoperable component technology made a marketplace of integrated circuits possible; software 
component technology may also create a market for HEC application components. While clearly still a 
long way off, this would be an exciting outcome. It may be faster to build a reliable application from 
reusable components, but will it have performance scalability?  Initial results with  software components 
based on parallel computing indicate that the answer is “Yes.”  However, more research is needed. 
6.3. Revolutionary Approaches 
A long-range program of research is needed to explore new programming models for HEC systems. The 
scientific programming languages of the future should allow the scientist to think about science rather 
than the intricacies of parallel programming. One should be able to express concurrency as the natural 
parallelism in the problem and not as an artifact of a software model. 
 
For HEC architectures, the challenge is exploiting locality and hiding communication latencies.  
However, in large-scale simulations, locality is natural to the problem, but it is often non-regular or 
dynamically changing.  For high-end systems with limited memory hierarchy management and latency- 
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hiding support, software must manage latency.  Unfortunately, we are very far from building tools that are 
sufficient for this task. 
 
One solution is to design languages from first principles to support the appropriate abstractions for 
scalable parallel scientific codes (e.g., ZPL [5]). In general, we must consider all approaches that promote 
automatic resource management. For example, we can build extensible compilers that allow us to 
integrate user-domain abstractions into the compilation process. Another approach is to telescope 
languages [7] that allow us to build application-level languages that compile to a sequence of lower-level 
languages, each of which can be optimized for a particular class of parallelism and resource management. 
 
Many concepts that have gained currency in computer science can be applied to high-end computing to 
solve both the problems of performance scaling and HEC software life-cycle management.  For example, 
generic programming teaches us how to separate data structures and algorithms when building software.  
This allows us to reuse the pattern of the algorithm while we replace data structure components.  In some 
cases, it may be possible to automatically generate program components, given a specification of both the 
algorithm and the data structure. This also allows us to publish and discover algorithms as reusable 
software components that can be separately coupled with data structure components.   
 
Another example of a potentially rewarding approach to high-end system software is “programming by 
contract.” Here, the programmer specifies the requirements of the generated code and the compiler works 
to either attain that goal or report to the programmer the trade-offs needed to achieve the goal. For 
example, the programmer may have a certain performance level that is required or an absolute 
requirement on correctness/repeatability. Alternatively, there may be a requirement for robustness that 
may necessitate the introduction of a persistence model into the program.   
6.3.1. Research on the Hardware/Software Boundary 
It remains difficult to achieve high application efficiency on large-scale cluster architectures, and only a 
handful of applications scale to several thousands of processors without careful hand-tuning. Much more 
research is needed to explore the detailed interactions between the hardware and software on modern 
HEC systems. To accomplish this, we need better instrumentation on all parts of the hardware. This 
includes performance counters for the computation units and the memory hierarchy.  
 
We must also explore programming language-type systems that better reflect the properties of HEC 
architectures. As the operating systems working group noted, we need an open, bi-directional API 
between the hardware and software. For example, one may wish to change the memory consistency 
model depending on the application.  In the future, we may have more processors based on reconfigurable 
hardware so an even greater burden/opportunity is presented to the software. 
 
Predictability for scheduling, fine-grained timing, and memory mapping is essential for scalable 
optimization. As HEC systems grow larger, fault tolerance also becomes more and more important.  
Software need to be more aware of the dynamic nature of its execution environment and have the ability 
to adapt to change. We must develop programming models that better support non-determinism 
(including results that are desirable, but boundedly incorrect).   
 
We need a better understanding of how the complex memory hierarchy of modern systems interacts with 
our software and algorithms. There are limits on what is possible with legacy codes that have poor 
memory locality. Software needs better mechanisms to map data structures to memory hierarchies. 
Possible new solutions involve cache aware/cache oblivious algorithms. More research is needed on 
virtual memory, file caching, and latency hiding. For example, can we build programming languages/ 
hardware with first- class support for hierarchical data structures?  Will streaming models be a better way 
to design some HEC software?  How can we make more efficient multi-threaded software/hardware? 
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6.4. Best Practices and Education 
As our applications become more interdisciplinary, better education is becoming essential for the 
effective use of HEC systems. Ideally, application scientists would not need to be experts on parallel 
programming because a multidisciplinary team would include an expert on HEC performance 
programming and an expert on modern software engineering practices. However, we do not have the 
trained people to make this commonplace.  
 
Computer science students need to be motivated to learn that performance is fun and application scientists 
need more training in software life-cycle management.  In general, both educators and students need more 
instructional access to HEC systems.  A program to increase support for student fellowships in high-end 
computing is essential. 
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7. PERFORMANCE MODELING, METRICS, AND SPECIFICATIONS 
David Bailey, Chair 
Lawrence Berkeley National Laboratory 
 
Allen Snavely, Vice Chair 
San Diego Supercomputer Center 
 
The single most relevant metric of high-end system performance is time to solution for the specific 
scientific applications of interest. Reducing the time to solution will require aggressive investment in 
understanding all aspects of the program development and execution process (programming, job setup, 
batch queue, execution, I/O, system processing, and post-processing). 
 
The current practice in system procurements is to require vendors to provide performance results on some 
standard industry benchmarks and several scientific applications typical of those being run at the 
procuring site. Constructing these application benchmarks is both cost- and labor-intensive, and 
responding to these solicitations is very costly for prospective vendors. Moreover, these conventional 
approaches to benchmarking will not be suitable for future acquisitions, where the system to be procured 
may be more than ten times more powerful than existing systems. 
 
Improved community-standard benchmarks would be welcome. Both large-scale and low-level 
benchmarks would help to streamline and consolidate procurements. Looking to the future, performance 
modeling looks even more promising. Recent successes suggest that it may be possible to accurately 
predict the performance of a future system, much larger than systems currently in use, on a scientific 
application that is much larger than any currently being run.  However, significant research is needed to 
make these methods usable by non-experts. 
 
Another idea that has considerable merit is to exploit the highly parallel systems available at many 
research centers to perform simulations of current and future high-end systems. This is now possible in 
the wake of recent developments in parallel discrete event simulation that permit simulations of this type 
to be done in parallel. One particularly compelling application of such technology is simulating the 
operation of very large inter-processor networks for future high-end systems.   
 
Research is also needed to bolster the capabilities to monitor and analyze the exploding volume of 
performance data that will be produced in future systems.  On-the-fly reduction of performance trace data, 
as well as intelligent analysis of this data, will significantly enhance the utility and usability of these 
performance tools.  All of this research will require significant involvement by vendors, and thus some 
dialogue will be needed to resolve potential intellectual property issues.  
7.1. Basic Metrics 
The consensus of the working group is that the single most relevant metric of high-end system 
performance is time to solution for the scientific applications of interest.  Time to solution is comprised of 
several factors, including: 1) time devoted to programming and tuning; 2) problem set-up time and grid 
generation; 3) time spent in batch queues; 4) execution time; 5) I/O time; 6) time lost due to job 
scheduling inefficiencies, downtime, and handling system background interrupts; and 7) job post-
processing, including visualization and data analysis. 
 
Although our primary focus is on execution time, we emphasize that the other items above are significant 
and cannot be ignored.  Indeed, all of these components of the solution time must be reduced if we are to 
utilize future systems effectively. For example, significantly increasing the computational power of a 
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system will not be very beneficial if the time required for writing the results to disk dominates the total 
execution time. Such considerations underscore the need for “balanced” systems, although no one 
“balance” formula can suffice for all applications. 
 
Programming time is a very significant issue.  For some high-end computing applications, software costs 
constitute as much as eighty percent of total system cost (software plus hardware plus maintenance).  This 
is due in part to the heavy reliance on the message passing interface (MPI) programming model, which, 
although generally superior in delivering good execution performance, is widely regarded as rather 
difficult to use.  Partly because of this difficulty, technical software firms have been reluctant to port their 
programs to highly parallel platforms; as a result, relatively few large corporations have exploited high- 
performance computing technology. 
 
The first step toward improving this state of affairs is to identify and measure the key factors that make 
high-end programming difficult, including programming models, language, level of abstraction, and 
barriers to re-use.  Such metrics would be useful for determining software investment strategies, as well 
as in gauging progress in the area of languages, compilers, and tools.  Currently, there are no good metrics 
for assessing programming difficulty. Programming difficulty for conventional systems and languages 
has been studied in the software engineering community; perhaps some of these methodologies could be 
applied in the high-end arena. 
 
Closely related to the question of programming difficulty is the issue of time spent tuning to achieve good 
performance. Currently, there are no objective measures of the effectiveness or ease of use of tuning 
tools, as far as we are aware.  This issue is addressed in detail below. 
 
Some work has been done in measuring system-level efficiency. There are significant differences in 
efficiency between some existing systems, exhibited by the fact that often only 75 percent or so of the 
available processor-hours in a given week’s operation are spent executing user jobs, even though the 
batch queues have jobs ready to execute. One relevant study is the Effective System Performance (ESP) 
benchmark [22], which measures several system-level factors, including efficiency of the job scheduler, 
job launch times, effectiveness of checkpoint-restart facility (if any), and system reboot times. 
 
We emphasize that many scientists have long complained that their jobs spend inordinate amounts of time 
in batch queues. This time is just as unproductive as the time spent waiting on a job because of poor 
execute-time performance. These considerations underscore the importance of focusing resources on 
those scientific projects most worthy of this valuable resource, and avoiding the temptation to over-
subscribe systems.  It also underscores the importance of efficient job schedulers and facilities such as 
system-level checkpoint-restart. 
 
For high-end computing, the primary metric of interest is the execution time for key scientific 
applications. Using this metric avoids many of the common pitfalls in performance reporting, such as the 
use of less-than-optimal algorithms to exhibit a floating-point operation per second rate that is 
superficially high. When reporting computation rates, responsible scientists typically use an operation 
count formula based on the most efficient practical algorithms known for the target application. Thus, if a 
less-than-optimal algorithm is selected for some reason, the reported performance will not be distorted by 
this selection.  This is simply a restatement of the principle that time to solution is the best figure of merit. 
 
However, no one single figure of merit and no one definition of system balance can encapsulate the full 
value of a high-end system.  At the very least, important decisions such as procurements should be based 
on several benchmarks, reflecting the breadth of the scientific applications for which the system is 
targeted.  
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7.2. Current Practice in System Procurements 
Currently, high-end system procurements at federally funded research centers are handled by a process 
that includes numerous general hardware and software specifications, performance results on some 
standard community benchmarks (e.g., the Linpack or SPEC benchmarks), and timings or related 
performance figures on a set of scientific programs thought to be typical of the actual applications 
programs run at the center. (See chapter 9 for a more detailed discussion of procurement strategies and 
recommendations.) Composing the list of specifications and constructing the set of benchmarks is a 
highly labor-intensive process. Often it is necessary to make significant changes to the application 
benchmarks, which are obtained from the scientists and engineers using the system, to ensure standard 
conformance and portability. 
 
The specifications and benchmarks are usually selected with the goal of acquiring a system that is more 
powerful than the systems currently in operation. Application benchmarks are validated on existing 
systems. In addition to being a dubious means of projecting the future full-system performance, such 
benchmarks typically are not very effective in disclosing system difficulties that only arise when the 
entire system is devoted to a single computational job. 
 
Once proposals have been received from prospective vendors, the review committee typically evaluates 
them using a process that involves factors such as performance, suitability for the mission, floor space, 
and power requirements, as well as total cost. Indeed, the selection process is akin to the constrained 
optimization problems studied in the field of operations research, although no one, to our knowledge, has 
yet formally applied techniques of operations research to a system selection. 
 
Prospective vendors must devote considerable resources to responding to the requests for proposals for 
high-end systems, and to the benchmarks in particular. Moreover, the current lack of any standard, 
discipline-specific benchmarks across centers means that vendors cannot amortize costs for porting and 
tuning codes across multiple solicitations. As a result, the prices of high-end systems quoted to federally 
funded research centers must be increased to recover solicitation response costs. These high costs often 
discourage smaller companies from attempting to compete in high-end solicitations. 
 
In short, while prevailing procurement practices are usually effective in selecting systems that are 
reasonably well designed, the process is lengthy and expensive both for the government and for 
participating vendors. Thus, any technically valid methodologies that can standardize or streamline this 
process will result in greater value to the federally funded centers, and greater opportunity to focus on the 
real problems involved in deploying and utilizing high-end systems. 
 
If any of the current initiatives to revitalize high-end computing are successful, then federally funded 
high-end computing centers will be faced with the challenge of acquiring systems that are potentially ten 
or more times more powerful than any system currently fielded.  With such a large gap between present 
and future systems, the applicability of conventional benchmarking methodology will be questionable.  
Novel architectures, distinct in design and technology from any existing systems (e.g., those being 
explored in DARPA’s HPCS program), will compound this challenge.  In short, a significantly improved 
methodology for system selection will be required for future solicitations. 
7.3. Performance-Based System Selection 
The field would benefit from one or more community-standard benchmarks to complement the scalable 
Linpack benchmark that has been used for many years. The longevity of the Linpack benchmark is a 
tribute to its thoughtful design because it can be arbitrarily scaled in size to match the increased 
capabilities of modern high-end systems. On the other hand, many believe that that this benchmark 
emphasizes performance on regular, dense matrix operations that possess strong data locality, and ignores 



         

 45  

the realm of irregular, sparse data access typical of the majority of modern scientific computing 
applications.  
 
Thus, there is a strong need for one or more new community-standard benchmarks that characterize other 
important aspects of high-end scientific computing, yet share with the scalable Linpack benchmark the 
desirable characteristics that have made it such a success.  Some discipline-specific, community-standard 
benchmarks would also be valuable, as they would enable vendors and computing centers to consolidate 
their benchmarking efforts, and would also facilitate useful interdisciplinary performance studies.   
 
A set of standardized low-level benchmarks would also be valuable.  The objective would be to define a 
modest-sized set of benchmarks that collectively characterize most of modern high-end computing, and 
possibly enable future high-end computing requirements to be defined as a combination of these 
benchmarks. 
7.3.1. Performance Modeling 
The best possibility for better understanding performance phenomena, and for assisting in intelligent 
system selection, may lie in performance modeling. As one example, accurate performance models have 
been developed for several full applications from the DOE ASCI workload [8, 11, 12], and these models 
are routinely used for system design, optimization, and maintenance.  Moreover, a similar model has been 
used in the procurement of the ASCI Purple system, predicting the performance of the SAGE code on 
several of the systems in a recent competition [16]. Alternative modeling strategies have been used to 
model the NAS Parallel Benchmarks, several small PETSc applications, and the applications POP 
(Parallel Ocean Program), NLOM (Navy Layered Ocean Model), and Cobal60, across multiple compute 
platforms (IBM Power3 and Power4 systems, a Compaq Alpha server, and a Cray T3E-600) [4, 17].  
These models are very accurate across a range of processors (from 2 to 128), with errors ranging from one 
to sixteen percent. 
 
These results suggest that it is possible to accurately predict the performance of a future system (much 
larger in size and employing a distinct design from hardware currently in operation) [20], running a future 
scientific application (much larger in problem size than currently being run).  We can even envision that a 
future call for proposals will specify that the vendor provide results on a set of low-level “atomic” 
benchmarks, generating the required input data, for performance models of key applications. Decision 
makers would then have not only performance data but also the capability to pursue various “what if” 
scenarios. Other uses include improved system configuration and system maintenance [4, 8, 9, 11, 17]. 
 
Executable analytical performance evaluation also shows promise [18]. This methodology can evaluate 
early-stage architecture designs over a wide operating range, and can aid in identifying advantageous 
architectural features before instruction set architectures are firmly established and system software 
(runtime systems or compilers) is available. 
 
Performance models can be used within a user code to control the execution dynamically for best 
performance. Some researchers are considering using simple performance models to improve load 
balancing in unstructured grid applications.  As another example, computational chemistry researchers are 
developing techniques to create highly accurate electronic structure codes based on specific 
characteristics of the system being used. In data-intensive applications, the allocation of data between 
memory and disk, or between local disk and global disk, can be decided based on system characteristics.   
 
All of this underscores the need for a variety of performance modeling methodologies, ranging from 
simple, curve-fitting approaches to sophisticated tools that perform a thorough inventory of all operations 
performed by the target application program on a particular system. However, much work is required to 
further automate and reduce the complexity and cost of the modeling work. In addition, more work is 
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needed to define a better interface between “traditional tools” (such as profilers, timers, and hardware 
performance monitors) and modeling tools. 
7.3.2. System Simulation 
A few simulations have been employed in the research community to study particular aspects of system 
performance [16], and vendors often develop near-cycle-accurate simulators as part of their product 
development. However, computational scientists rarely use such tools to understand or predict the 
performance of their applications. Several challenges must be overcome for such simulations to be useful 
in understanding application performance. Perhaps most importantly, the simulation times required to 
analyze the performance of even a small loop are very large; the analysis of a full-length application code 
has been prohibitive. Another common weakness of these simulations is that they typically target only 
single-processor systems or, at best, shared-memory multiprocessor systems. 
 
With the emergence of highly parallel computing platforms, we can consider highly detailed parallel 
simulations of scalable systems. In many applications, low-level, processor-memory behavior can be 
largely decoupled from the analysis of inter-processor network phenomena. Once the communication 
behavior of an application has been profiled, its inter-processor network behavior can be simulated by 
generating a sequence of communication operations that mimic the statistics of frequency and message 
length typical of the program’s phases. One important factor is the recent development of parallel discrete 
event simulation (PDES) techniques [7, 10]. These techniques, such as “optimistic” speculation, enable 
simulations to be performed in parallel; otherwise it is very difficult to achieve even modest speedups due 
to the fundamental shortage of concurrency and the need for frequent, low-level synchronization. 
 
Ideally, we envision an open-source architectural simulation framework and application programming 
interface that enables plug-and-play functionality between separately developed simulators for different 
architectural features (e.g., processor-in-memory, polymorphic multithreaded processor, and network), 
and would also enable zoom-out and zoom-in between statistically based and cycle-accurate simulation 
techniques. This framework will, however, require significant advances in simulation methodologies to 
support concurrent use of modules running at different time scales and based on different simulation 
techniques. Some discrete-event simulation packages are available in the research community. It is not 
clear whether any of these could be adapted for the requirements described here, or whether a completely 
new simulation package would have to be written.  
7.3.3. Performance Monitoring Infrastructure 
Informal approaches to parallel performance monitoring and performance data analysis may be currently 
acceptable; however, such approaches will be inadequate once systems are fielded with multiple levels of 
parallelism throughout the system’s compute nodes, I/O system, network, and memory hierarchy, and 
once they include tens or hundreds of thousands of compute nodes. It is also unlikely that novel 
architectures can be effectively modeled and utilized without an advanced monitoring infrastructure. 
 
Advanced facilities for hardware performance monitoring will be required to obtain performance data 
without significant perturbation. A key challenge, beyond counting events throughout the system, is in 
gathering and interpreting the exploding quantity of data. Today, collecting memory access pattern data, 
which is often crucial for understanding performance on deep-memory-hierarchy machines, implies a 
slowdown of three orders of magnitude [26]. However, many applications of interest run for hours or 
days, during which their performance behavior changes frequently. Systems with tens or hundreds of 
thousands of processors will greatly compound this problem of performance data analysis.   
 
Several alternatives are being explored, ranging from clever statistical sampling schemes to on-the-fly 
analysis of performance data that would reduce the amount of data involved.  Meaningful analysis of this 
data will require advanced techniques such as multivariate statistical methods [1], knowledge discovery 
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tools [28], time series analysis [30], and advanced visualization schemes [2] to distill important facts from 
these potentially massive data sets.  This analysis can then be used to select the key features to apply to 
performance monitoring and to build predictive models of the performance of a single processor as well 
as the entire parallel system. 
 
A unique opportunity exists for performance researchers to work with vendors to improve the selection of 
hardware performance data. Ideally, the design of performance monitoring hardware should be driven by 
the data input needs for application performance modeling and analysis, rather than modeling and 
analysis capabilities being limited by the available data. For example, one key item that current hardware 
monitors lack is information regarding memory addresses, such as data on gaps or patterns between 
successive addresses. This data would provide valuable insights into the memory behavior of a user 
program.  We hope that vendors will consider counters useful to application developers and performance 
tuners as well, for example by implementing the PAPI proposed standard metrics [3]. 
 
Another area where the performance research and vendor design communities could collaborate is 
enhancing the performance monitoring facilities of inter-processor network hardware. Although network 
hardware often includes some performance monitoring facilities, the inability to associate performance 
data with a specific application code significantly hinders applying the data to application performance 
evaluation. The use of reconfigurable technology (e.g., FPGAs) might be of use to support performance 
monitoring applications for both hardware engineers and end-users. Determining what events are most 
important to monitor, designing systems to support low-overhead monitoring that generates data useful to 
application developers, and designing software to utilize this information are important topics of future 
research. 
 
Any improvements in the capabilities of performance tools must be matched by a corresponding 
improvement in ease of use; otherwise they will have only limited impact in the overall goals of reducing 
time to solution and simplifying system acquisitions. We envision a set of standard templates for 
performance analysis that automatically engage typical performance analysis scenarios, using advanced 
tools. High-level tools could also increase the user base of performance facilities by applying techniques 
of automatic knowledge discovery to performance data. The application of techniques such as decision 
trees to performance data has been initially explored [19, 14], but significant additional research is needed 
in this area. 
 
It is also important that high-end computing centers make a commitment to port their performance tools 
to new systems, and keep such software up to date. If users cannot be assured that these tools will 
continue to be supported over multiple generations of hardware, they are unlikely to make the investment 
of time and effort to use them. 
7.3.4. Libraries, Compilers, and Self-Tuning Software 
It is not sufficient to merely study the performance of large future systems; facilities for automatic and/or 
semi-automatic performance tuning must also be improved.  One possible approach is to expand the scope 
of optimized scientific libraries for high-performance computing. Three canonical examples are the 
ScaLAPACK, PETSc, and the NWChem libraries. Some related efforts include the emergence of the 
Community Climate Model (CCM) in the climate-modeling community, and similar efforts to unify 
fusion and accelerator-modeling computations. 
 
One of the more promising developments is the recent emergence of “self-tuning” library software.  
Examples include the FFTW library [11] and versions of ATLAS, ScaLAPACK, and LFC library 
routines [10]. In an initialization step, a program first tests different computational strategies (such as 
different parameters for array padding and cache blocking). The tuning program then selects the option 
that demonstrates the best performance for future production runs. This general approach can be extended 
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to almost any large-scale software library. However, devising tests, determining optimal parameters, and 
using the resulting parameters in the production code must be simplified if this general scheme is to be 
implemented widely.  One possibility combines rapid, on-the-fly performance modeling with such self-
adaptive, self-tuning codes to narrow the parameter space for trying different computational strategies. 
 
Eventually, these self-tuning facilities can be incorporated directly into conventional user code. We 
foresee the time when self-tuning facilities will be understood well enough that they can be inserted by a 
preprocessor (and eventually perhaps by a compiler) into a user code at the start of the main program, or 
even at the subroutine level. The basic facilities have already been demonstrated in current research, 
including self-tuning library software, performance assertions, compiler enhancements, and 
semiautomatic code modifications [23].  
 
It is instructive to recall the history of vector computing. Initially, compilers offered little or no assistance; 
it was necessary for programmers to explicitly vectorize loops. Then semi-automatic vectorizing 
compilers became available, which eventually were quite successful. The final step was runtime 
vectorization, with compilers generating both scalar and vector code, and then deciding at runtime if the 
vector code were safe or more efficient.  There is a similar long-term potential for self-tuning code that 
exploits performance monitoring. Other ideas for compiler technology that show promise include 
dynamic compilation and compile-time searching for optimal run-time alternatives, including array 
blocking, loop fusion and fission, flexible data layout, and array padding.  Since these changes in several 
cases go beyond the limits of what is permissible according to existing language standard definitions, this 
points to the need to work with language standard committees in tandem with this research. 
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8. APPLICATION-DRIVEN SYSTEM REQUIREMENTS 
Michael Norman, Chair 
University of California at San Diego 
 
John Van Rosendale, Vice Chair 
Department of Energy 
 
During the working group’s discussions, researchers presented the needs of quantum chromodynamics 
(QCD), fusion research, computational chemistry (including environmental and catalysis), and the 
biological sciences. Working group participants provided additional requirements for the following 
disciplines: accelerator physics, astrophysics and cosmology, aviation, atmospheric science, geophysics, 
materials science, and nanoscience.  With this background, the working group considered the computing 
system needs and requirements for next-generation computational science. 
8.1. Application Challenges 
All of the disciplines mentioned above are large users of current high-end systems, and will continue to be 
in the coming decade. Computational QCD sets the scale of what may be considered large usage today. In 
aggregate, the U.S. QCD research community sustains 0.5-1 teraflops/second (TF) on all resources 
available to it. A state-of-the-art calculation consumes 0.8 petaflop-hours or 3x1018 floating point 
operations. Currently, we conservatively estimate that computational chemistry consumes about 50 TF on 
a 24/7 basis. Other large users are within an order of magnitude of this number.  
 
Representatives of multiple disciplines at the workshop made the quantitative case for speedups in 
sustained performance of 50 to 100 over current levels to reach new, important scientific thresholds.  In 
QCD, architectures with a sustained performance of 20 to 100 TF would enable calculations of sufficient 
precision to serve as predictions for ongoing and planned experiments. In magnetic fusion research, 
sustained execution of 20 TF would allow full-scale tokamak simulations that resolve the natural length 
scales of the microturbulence responsible for transport, as well as enable self-consistent, gyrokinetic 
modeling of the critical plasma edge region. Although the needs of ab initio quantum chemistry 
simulation for industrial and environmental applications are almost limitless, 50 TF was identified as an 
important threshold for developing realistic models of lanthanides and actinides on complex mineral 
surfaces for environmental remediation, and for developing new catalysts that are more energy efficient 
and generate less pollution.  
 
To demonstrate the range of application needs, we consider two examples: lattice QCD and 
computational biosciences. 
8.1.1. Lattice QCD 
Recent advances in algorithms, particularly new formulations of QCD on the lattice, now enable 
calculations of unprecedented accuracy, provided the required computational resources are available. 
Moreover, lattice gauge theory was invented in the United States, and U.S. physicists have traditionally 
been intellectual leaders in the field. However, for the past five years, greater investments in 
computational resources have been made in Europe and Japan.  
 
Within the next year, European lattice theorists will have dedicated, customized computers that sustain 
well over 15 TF. If U.S. physicists are to regain leadership of the field and be able to attract outstanding 
young scientists, comparable resources are needed.  Within the next five years, the U.S. lattice community 
needs to sustain hundreds of teraflops/second and, by the end of the decade, multiple petaflops/second. 
Simplifying features of QCD simulations provide a pathway for doing so through the construction of 
special purpose hardware. 
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8.1.2. Computational Biosciences 
High throughput technologies are revolutionizing the way biologists are gaining an understanding of how 
cells and organisms behave. These new technologies, which generate massive amounts of data, are 
enabling the study of the complexity of living systems, and are leading to a paradigm change in the way 
biological research is conducted—a transition from the reductionist molecular level to systems biology. 
Computational sciences and large-scale computers will play a key role in this transition. If the biology 
data tsunami is not addressed, biologists will not be able to extract the full range of possible insights from 
the data. 
 
Examples of high throughput biological sources include genomic data for multiple organisms and for 
individuals, protenomic data from mass spectrometry and arrays (~100 GB/day/mass spectrometer and for 
50 mass spectrometers, 5 TB/day) and cell imaging (a FRET analysis of a cell generate a 
megapixel/millisecond). (There are many such spectrometers, leading to tens of TB/day.) Likewise, cryo-
electron microscopy for complex cellular and molecular structures (50 to 100 GB/day/spectrometer), x-
ray imaging at synchrotrons (TB/day), and molecular dynamics simulations (2.5 TB/day on a 10 TF 
computer) are generating large data sets. These data sets not only need to be stored, but must be made 
readily available to a broad community that places real demands on networks.  
 
As experimental systems in biology become more expensive to purchase and maintain, they must be 
localized, which requires real-time, remote control of experiments. In turn, this requires significant 
networking resources for user access.  In this distributed resource model, each experiment transmits data 
back to the user, which enables the user to make decisions about experiment control.  The amount of data 
transmitted by the user is usually small, but a high-integrity network is needed with low latency. The 
amount of data transmitted to the user may be much larger, making bandwidth and latency management 
important for real-time control. 
8.2. System Challenges 
These two examples are illustrative—members of every discipline present at the workshop cited the 
difficulties in achieving high, sustained performance (relative to peak) on complex applications as the key 
hardware challenge. This reflects the imbalance between processor speed and memory latency and 
bandwidth. A more serious imbalance exists between interprocessor latency and bandwidth.  
 
Application scientists have invested considerable effort in optimizing parallel applications for current 
architectures. Many researchers have reported application scaling to several thousand processors for fixed 
work per processor experiments (weak scaling). Fixed-size problems, such as occur in molecular 
dynamics and climate modeling, encounter scaling barriers at much lower processor counts, depending on 
the size of the problem (strong scaling.) Applications with a single, well-optimized kernel, such as lattice 
QCD, do well on current architectures, although even here a performance sacrifice of a factor of 3 to 4 
exists due to inadequate memory bandwidth, except on computers specially customized for this problem.  
 
The key challenge is the difficulty building and maintaining complex application software. The single 
programmer model is not sustainable, and a multidisciplinary team approach is not only desirable but also 
essential, given the level of complexity present in modern high-end applications. Although new and 
efficient algorithms are also needed, the key algorithms challenge is not about algorithms per se, but 
finding ways to integrate models at different length and time scales into holistic, multi-scale simulations. 
(See section 6.1 for a software perspective on this problem.) 
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Figure 8.1 Multi-Scale Computational Nanoscience Simulations (Source: M. Gutowski) 

Figure 8.1 shows an example of the importance of multi-scale simulations from nanoscience. Each box 
represents an algorithm or application developed to model phenomena on the length scale given by the 
axis. To fully understand systems of interest, we must integrate models across the entire range of length 
scales.  
8.3. Current System Limitations 
Representatives of every discipline who attended the workshop cited inadequate memory bandwidth as a 
critical limitation. Most disciplines also cited inadequate inter-processor communication latency and 
bandwidth as critical system parameters, although there was considerable dispersion in how much 
improvement is needed.  
 
The lattice QCD community has carefully studied the relation of communication capabilities to 
application performance. QCD applications employ a simple 4-D block decomposition of the simulated  
4-D space-time volume. To fully overlap communication with computation, an inter-processor 
communication speed of 0.364 MF/L MB/s per processor is needed, where MF is the sustained execution 
speed in megaflops/second of the QCD kernel per processor, and L4 is the number of cells in one block. 
Given that most of the communication is nearest neighbor in this application, this number serves as a 
lower limit for more communication-intensive applications, such as those with global elliptic solvers like 
cosmology and material science.  
 
Comparing application performance on a single processor versus on many processors provides a rough 
measure of the imbalance between processor and communication speeds on current architectures. The 
disciplines surveyed report a degradation of performance in the range of 2 to 10. Multiplying this by a 
typical factor of three required to achieve 50 percent of peak on a single processor shows that the loss of 
productivity is somewhere in the range 6 to 30, depending on application.   
8.4. Support Environment Requirements 
Applications have become so complex that multidisciplinary teams of application and computer scientists 
are needed to build and maintain them. The traditional software model of a single programmer developing 
a monolithic code is no longer relevant at the high end and cutting edge. In particular, large teams with 
diverse domain expertise are needed to integrate multi-scale simulation models. No single person or small 
group has the requisite expertise. This need is particularly acute in the magnetic fusion simulation 
community, where dozens of component models have been developed for different pieces of the problem. 
New team structures and new mechanisms to support distributed collaboration are needed, since the 
intellectual effort is generally distributed, not centralized.  
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Figure 8.2 Facilities Support for Computational Science 

The data tsunami (i.e., the flood of both input and output data for HEC systems) is a second challenge. 
Currently, terabytes per day of experimental data are being collected and archived at HEC centers for 
biological/biomedical research, weather prediction, high energy physics, earth and space science, and 
other uses. This number is limited mainly by detector technology and network communication 
bandwidths. Flagship projects such as NASA’s Earth Observing System, DOE’s Genomes to Life, and 
NSF’s National Virtual Observatory anticipate data collection rates growing by at least two orders of 
magnitude by decade’s end. Many of today’s high-end numerical simulations also produce terabytes per 
run spread over many days. With the anticipated increases in computer capability discussed here, 
individual simulations will produce terabytes per day within five years. 
 
Massive, shared-memory architectures with greater I/O capabilities are needed for data assimilation, 
analysis, and mining. The motivation for shared-memory systems is that many data ingest or analysis 
codes are sequential, legacy codes. Although these codes could be parallelized, developing and validating 
new implementations is often perceived as a poor use of human resources. The capabilities of such 
shared-memory systems must match the capabilities of the HEC systems they serve. A poll of working 
group participants suggests that a data analysis server should have no less than one-quarter of the memory 
and compute capacity as the full HEC system, and roughly the same I/O bandwidth to mass store.  
 
Establishing computational “end stations” is one integrated solution to the needs of developers and users. 
This is an analogy to the organization of high-end experimental facilities (see Figure 8.2 for an 
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illustration). In experimental science, users interface with a national user facility via end stations that 
house instruments and their associated instrument specialists.  
 
Application codes and their associated analysis tools are the instruments of computational science. The 
developers of these applications can be likened to instrument specialists, in that they possess the most 
detailed knowledge of the applications’ capabilities and usage. Unlike experimental science, however, the 
computational end stations need not be located at the HEC facilities. In fact, they need not be centralized 
at all, but may be distributed research networks, as are emerging in many fields. Within this facilities 
analogy, HEC users in the form of collaborative research teams would interface primarily with the 
application specialists within domain-specific research networks that develop, optimize, and maintain the 
relevant applications. 
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9. PROCUREMENT, ACCESSIBILITY, AND COST OF OWNERSHIP 
Frank Thames, Chair 
NASA Langley Research Center 
 
James Kasdorf, Vice Chair 
Pittsburgh Supercomputing Center 
 
The requirements specifications, along with establishment and application of sound and precise 
evaluation criteria and the selection of appropriate contract vehicles, are the most important elements of 
system procurements. Each is discussed in some detail below, along with some comments on improving 
the overall acquisition process and some miscellaneous items. 
9.1. Procurement 

9.1.1. Requirements Specification 
The most important specification is to elucidate precisely the fundamental science requirement(s) the 
proposed system must satisfy. This is key to a vendor’s understanding of the computer system 
requirements and details of the desired application environment. Prospective vendors should be 
encouraged to hold discussions with the intended user community to gain a full understanding of the 
desired environment. 
 
The specification of leading-edge, high-end computing systems is not an exact science, and it should not 
be treated as such. The specifications should strongly emphasize functional requirements rather than 
detailed technical implementations.  Similarly, one should avoid over-specifying the requirements for 
advanced systems. Because the desired system may not exist at the time the acquisition process is 
initiated, mandatory requirements should be chosen with great care or, preferably, replaced with 
requirements weighted to convey their relative importance. Similarly, procurements should consider 
permitting reasonable flexibility in specifying delivery dates.   
 
Because vendors often reply to multiple solicitations simultaneously, overly aggressive delivery schedules 
may force some vendors to no-bid a solicitation. Federal solicitations require competition. Thus, it is 
unwise to cite requirements that may limit, or even eliminate, competition. The best procurements are 
those that draw the maximum participation from the HEC vendor community. Because these 
procurements deal with very advanced systems, it is wise to employ flexible, and even novel, acquisition 
approaches. For example, the use of vendor/customer technical partnerships is particularly appropriate, as 
is the use of contract options to permit flexible deliveries. Lastly, one should consider carefully the 
fundamental differences in the specifications for systems with diverse uses (e.g., capability or capacity 
uses).  
9.1.2. Evaluation Criteria 
Evaluation criteria dominate acquisitions because they define customer priorities; one of these critical 
criteria is cost. The appropriate cost metric might be that of Total Cost of Ownership—that is, the total 
life-cycle cost of acquiring, installing, operating, and disposing of large HEC systems. Suggested 
elements of the total ownership cost are covered in detail below.   
 
From a technical standpoint, it is paramount that “real” benchmarks be used to categorize system 
performance. This is not the simplest of tasks even for short-term contracts. For longer-term procurements 
where the “real” benchmarks may not be known, the customer should specify required application 
speedup. This provides flexibility, as customers often can project the general level of increase in 
application complexity.   
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As discussed in chapter 7, benchmarking can be expensive for vendors, so it is best not to push very hard 
on difficult benchmarks. Should the expense become too great, some vendors may choose not to 
participate in a given acquisition opportunity. As HEC systems become larger and even more complex, a 
composite of application benchmarks may be inadequate to accurately measure system performance. This 
implies that benchmarks must be rethought to ensure that the desired system is acquired. Because high-
end systems are often difficult to specify, and they occupy a small market segment, customers should use 
a best-value approach in their evaluations (i.e., a balance between cost of ownership and technical 
performance). 
 
Finally, as in all acquisitions, risk should be evaluated.  Risks take multiple forms, and the ones cogent to 
the particular acquisition should be considered. Risk types include schedule, technical, and cost.  
Evaluating risk is not easy and is often somewhat subjective. Nevertheless, it is very important, 
particularly for HEC systems. 
9.1.3. Contract Type 
Most government and private entities use multiple contract types that depend on many factors. However, 
they are normally tailored to both requirements and market diversity.  For long-term, leading-edge HEC 
procurements, a cost-plus contract format is preferred. This is particularly true for contracts that are 
developmental (i.e., contracts where it is difficult to document and categorize all risks). The General 
Services Administration provides a variety of contracts that any federal agency can use. The use of 
existing vehicles can lead to substantially lower life-cycle costs; full-blown, competitive procurements are 
time-consuming and, hence, quite costly. 
9.1.4. Process Improvement 
The working group identified four cogent elements in process improvement.  First, HEC procurers should 
consider employing the “DARPA Process” for HEC acquisitions. This process has two principal features: 
 
• It has an “R&D” flavor; that is, it is low on detailed specifics and long on desired outcomes. 
• It features multiple awards and down selects to move from development to prototype and/or 

production systems. 
 
The second process improvement concerns acquisition schedule. Because both customers and vendors are 
likely to be engaged in multiple acquisitions, all parties must attempt to adhere to a rigid schedule.  This 
not only lowers cost, but also promotes maximum vendor participation. The third suggestion was that the 
customers engage users in the acquisition process from the very earliest stages.  This reduces vendor risk 
and provides users with “decision proximity.” Finally, it is strongly suggested that open communications 
between customers and vendors be maintained for as long as legally practical and openly fair. 
9.1.5. Other Considerations 
There was unanimous agreement among the working group that the federal government should not 
employ a single acquisition for all federal HEC systems.  This would lead to a user disconnect and lead to 
the inevitable “Ivory Tower” syndrome that is counterproductive in a development-oriented environment 
like HEC. The lesson is not to “over-centralize.” Yet another concern was inconsistency in the manner 
that government procurement regulations are interpreted and implemented, even within the same agency.  
Such inconsistencies lead to general confusion, longer schedules, and increased cost. 
 
The working group was asked to comment on any factors they felt were important in the revitalization of 
the HEC industry.  The group provided two summary recommendations: 
 
• The market should be composed of multiple vendors (greater than three), each with an annual 

business base in excess of several hundred million dollars. This business base is necessary to maintain 
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the high level of technical investments needed to remain competitive in the technically sensitive HEC 
market.The HEC market is not large (~$1B/year); however, to remain commercially viable, these 
companies must have adequate returns. 

9.2. Accessibility 
The working group generally felt that accessibility was not a compelling issue.  In summary, the findings 
were that there are many standard vehicles to use to implement interagency agreements to provide HEC 
accessibility 

• Suggested process: Current large suppliers (e.g., NSF, DoD HPC Modernization) would add 
additional capacity to existing sites to service the needs of agencies with smaller requirements 
that are insufficient to justify large expenditures for a sustaining HEC infrastructure. 

• Implementation suggestion: Consider a single point of contact for federal agencies to go to for 
accessibility suggestions (not implementation).  The NCO would be a logical choice as they are 
cognizant of federal IT R&D. 

• Critical issue: The requiring agency must have designated, multiple-year funds to purchase HEC 
computational capabilities from the large suppliers.  HEC capability cannot be purchased “by the 
yard.”  There must be sustaining commitments. 

9.3. Cost of Ownership 
The working group identified several factors related to total cost of ownership. For easy reference, these 
factors are consolidated in Table 9.1. 
 
One item in Table 9.1 related to lost opportunity costs requires some elaboration. These costs are difficult 
to quantify and anticipate; however, because they can be high, they should be given careful thought. 
Although lost opportunity costs vary significantly, here are some suggestions for the costs being 
considered: 
 
• Lost research opportunities due to excessive downtime or inappropriate system architecture. 
• Low user productivity due to lack of application programming tools. 
• Legacy codes not optimized for “new” system architecture. 
 
Overall, one can attribute many of these costs to the substantial difficulty in evaluating system and 
application support tools, which affects productivity for application code development as well as 
production computing. 
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Factor Type Comments 
Procurement of Capital Asset   
 - Hardware   
 - Software licenses Implementation of procurement 
 - Workforce   
 - Cost of money 

One-time 

For LTOPs 
Maintenance of Capital Assets   
 - Hardware   
 - Software licenses 

Recurring
  

Services Workforce dominated; will inflate yearly (~4%)
 - System administration   
 - Application support/porting   
 - Operations   
 - Security 

Recurring

  
Facility   
 - HVAC   
 - Electrical power   
 - Maintenance   
 - Initial construction If required 
 - Floor space 

Recurring

  
Networks   
 - Local Area Network   
 - Wide Area Network 

Recurring
  

Training Recurring   
Miscellaneous     
 - Insurance Recurring   
 - Disposal of capital assets One-time   
 - Lost opportunity Both See text 

Table 9.1 Total Cost of Ownership Factors 
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APPENDIX B.   WORKING GROUP CHARTERS AND PARTICIPANTS 
The workshop was organized as a set of eight working groups, each with a specific technical charge.  To 
balance participation across the working groups, the organizers initially assigned members to each group, 
based on their expression of interests.  At the workshop, we allowed participants to shift groups, based on 
discussions at the meeting.   
B.1. Enabling Technologies 
 
B.1.1. Charter 
Establish the basic technologies that may provide the foundation for important advances in HEC 
capability and determine the critical tasks required before the end of this decade to realize their potential. 
Such technologies include hardware devices or components and the basic software approaches and 
components needed to realize advanced HEC capabilities.   
 
Questions: 
• Provide information about key technologies that must be advanced to strengthen the foundation for 

developing new generations of HEC systems. Include discussion of promising novel hardware and 
software technologies with potential pay-off for HEC. 

• Provide a brief technology maturity roadmap and investment strategy with discussion of costs to 
develop these technologies. 

 
B.1.2. Participants 
Sheila Vaidya, Lawrence Livermore National Laboratory (chair) 
Stuart Feldman, IBM (vice chair) 
 
Kamal Abdali, NSF 
Fernand Bedard, NSA 
Herbert Bennett, NIST 
Ivo Bolsens, XILINX 
Jon Boyens, Department of Commerce 
Bob Brodersen, University of California at Berkeley 
Yolanda Comedy, IBM 
Loring Craymer, Jet Propulsion Laboratory (JPL) 
Bronis de Supinski, Lawrence Livermore Nation Laboratory 
Martin Deneroff, SGI 
Sue Fratkin, CASC 
David Fuller, JNIC/Raytheon 
Gary Hughes, NSA 
Tyce McLarty, Lawrence Livermore National Laboratory 
Kevin Martin, Georgia Institute of Technology 
Virginia Moore, National Coordination Office 
Ahmed Sameh, Purdue University 
John Spargo, Northrop-Grumman 
William Thigpen, NASA 
Uzi Vishkin, University of Maryland 
Steven Wallach, Chiaro 
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B.2. COTS-Based Architectures 
 
B.2.1. Charter 
Determine the capability roadmap of anticipated COTS-based HEC system architectures through the end 
of the decade. Identify those critical hardware and software technology and architecture developments, 
required to both sustain continued growth and enhance user support 
 
Questions 
• Identify opportunities and challenges for anticipated COTS-based HEC systems architectures 

through the decade and determine its capability roadmap.   
• Include alternative execution models, support mechanisms, local element and system structures, 

and system engineering factors to accelerate rate of sustained performance gain (time to solution), 
performance to cost, programmability, and robustness.   

• Identify those critical hardware and software technology and architecture developments, required 
to both sustain continued growth and enhance user support. 

 
B.2.2. Participants 
Walt Brooks (chair), NASA Ames Research Center 
Steve Reinhardt (vice chair), SGI 
 
Erik DeBenedictis, Sandia National Laboratories 
Yuefan Deng, SUNY at Stony Brook 
Don Dossa, Lawrence Livermore National Laboratory 
Guang Gao, University of Delaware 
Steven Gottlieb, Indiana University 
Richard Hilderbrandt, National Science Foundation 
Curt Janssen, Sandia National Laboratories 
Bill Kramer, NERSC 
Charles Lefurgy, IBM 
Greg Lindahl, Key Research 
Tom McWilliams, Key Research 
Rob Schreiber, Hewlett-Packard 
Burton Smith, Cray 
Stephen Wheat, Intel 
John Ziebarth, Los Alamos National Laboratory 
B.3. Custom Architectures 
 
B.3.1. Charter 
Identify opportunities and challenges for innovative HEC system architectures, including alternative 
execution models, support mechanisms, local element and system structures, and system engineering 
factors to accelerate rate of sustained performance gain (time to solution), performance to cost, 
programmability, and robustness. 
 
Establish a roadmap of advanced-concept alternative architectures likely to deliver dramatic 
improvements to user applications through the end of the decade. Specify those critical developments 
achievable through custom design necessary to realize their potential.   
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Questions: 
• Present driver requirements and opportunities for innovative architectures demanding custom 

design. 
• Identify key research opportunities in advanced concepts for HEC architecture. 
• Determine research and development challenges to promising HEC architecture strategies.  
• Project brief roadmap of potential developments and impact through the end of the decade. 
• Specify impact and requirements of future architectures on system software and programming 

environments. 
 
B.3.2. Participants 
Peter Kogge, University of Notre Dame (chair) 
Thomas Sterling, California Institute of Technology and NASA JPL (vice chair) 
 
Duncan Buell, University of South Carolina 
George Cotter, National Security Agency 
William Dally, Stanford University 
James Davenport, Brookhaven National Laboratory 
Jack Dennis, Massachusetts Institute of Technology 
Mootaz Elnozahy, IBM 
Bill Feiereisen, Los Alamos National Laboratory 
David Fuller, JNIC 
Michael Henesey, SRC Computers 
David Kahaner, ATIP 
Norm Kreisman, DOE 
Grant Miller, National Coordination Office 
Jose Munoz, DOE NNSA 
Steve Scott, Cray  
Vason Srini, University of California, Berkeley 
Gus Uht, University of Rhode Island 
Keith Underwood, Sandia National Laboratories 
John Wawrzynek, University of California, Berkeley 
B.4. Runtime and Operating Systems 
 
B.4.1. Charter 
Establish baseline capabilities required in the operating systems for projected HEC systems scaled to the 
end of this decade and determine the critical advances that must be undertaken to meet these goals. 
Examine the potential, expanded role of low-level runtime system components in support of alternative 
system architectures. 
 
Questions: 
• Establish principal functional requirements of operating systems for HEC systems of the end of the 

decade 
• Identify current limitations of OS software and determine initiatives required to address them 
• Discuss role of open source software for HEC community needs and issues associated with 

development/maintenance/use of open source 
• Examine future role of runtime system software in the management/use of HEC systems containing 

from thousands to millions of nodes 
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B.4.2. Participants 
Rick Stevens (chair), Argonne National Laboratory 
Ron Brightwell (vice chair), Sandia National Laboratories 
 
Robert Ballance, University of New Mexico 
Jeff Brown, Los Alamos National Laboratory 
Deborah Crawford, NSF 
Wes Felter, IBM 
Gary Grider, Los Alamos National Laboratory 
Leslie Hart, NOAA 
Thuc Hoang, Department of Energy 
Barney Maccabe, University of New Mexico 
Ron Minnich, Los Alamos National Laboratory 
D.K. Panda, Ohio State University 
Keshav Pingali, Cornell University 
Neil Pundit, Sandia National Laboratories 
Dan Reed, NCSA, University of Illinois 
Asaph Zemach, Cray 
B.5. Programming Environments and Tools 
 
B.5.1. Charter 
Address programming environments for both existing legacy codes and alternative programming models 
to maintain continuity of current practices, while also enabling advances in software development, 
debugging, performance tuning, maintenance, interoperability and robustness. Establish key strategies and 
initiatives required to improve time to solution and ensure the viability and sustainability of applying 
HEC systems by the end of the decade. 
 
Questions: 
• Assume two possible paths to future programming environments: (a) incremental evolution of 

existing programming languages and tools consistent with portability of legacy codes and (b) 
innovative programming models that dramatically advance user productivity and system 
efficiency/performance 

• Specify requirements of programming environments and programmer training consistent with 
incremental evolution, including legacy applications  

• Identify required attributes and opportunities of innovative programming methodologies for future 
HEC systems 

• Determine key initiatives to improve productivity and reduce time-to-solution along both paths to 
future programming environments 

 
B.5.2. Participants 
Dennis Gannon (chair), Indiana University 
Richard S. Hirsh (vice chair), National Science Foundation 
 
Rob Armstrong, Sandia National Laboratories 
David Bader, University of New Mexico 
David Bernholdt, Oak Ridge National Laboratory 
David Callahan, Cray 
William Carlson, IDA Center for Computing Sciences 
Siddhartha Chatterjee, IBM 
Thomas Cormen, Dartmouth College 
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Tamara Dahlgren, Lawrence Livermore National Laboratory 
Wael Elwasif, Oak Ridge National Laboratory 
Thomas Epperly, Lawrence Livermore National Laboratory 
Howard Gordon, Center for Computing Sciences  
John Hall, Los Alamos National Laboratory 
Daryl Hess, NSF 
Laxmikant Kale, University of Illinois 
Charles Koelbel, Rice University 
Gary Kumfert, Lawrence Livermore National Laboratory 
John Levesque, Cray 
Lois Curfman McInnes, Argonne National Laboratory 
Jarek Nieplocha, Pacific Northwest National Laboratory 
Matthew Rosing, PeakFive  
Surresh Shukla, Boeing  
Anthony Skjellum, MPI-Software Technology  
Lawrence Snyder, University of Washington 
Alexander Veidenbaum, University of California, Irvine 
Xiaodong Zhang, National Science Foundation 
Hans Zima, NASA Jet Propulsion Laboratory 
 
B.6. Performance Modeling, Metrics, and Specifications 
 
B.6.1. Charter 
Establish objectives of future performance metrics and measurement techniques to characterize system 
value and productivity to users and institutions. Identify strategies for evaluation including benchmarking 
of existing and proposed systems in support of user applications. Determine parameters for specification 
of system attributes and properties 
 
Questions: 
• As input to HECRTF charge, provide information about the types of system design specifications 

needed to effectively meet various application domain requirements. 
• Examine current state and value of performance modeling, metrics for HEC and recommend key 

extensions 
• Analyze performance-based procurement specifications for HEC that lead to appropriately 

balanced systems. 
• Recommend initiatives needed to overcome current limitations in this area.  
 
B.6.2. Participants 
David H. Bailey (chair), Lawrence Berkeley National Laboratory 
Allen Snavley (vice chair), San Diego Supercomputer Center 
 
Steven Ashby, Lawrence Livermore National Laboratory 
Maurice Blackmon, UCAR 
Patrick Bohrer, IBM 
Kirk Cameron, University of South Carolina 
Carleton DeTar, University of Utah 
Jack Dongarra, University of Tennessee 
Douglas Dwoyer, NASA Langley Research Center 
Wesley Felter, IBM 
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Peter Freeman, National Science Foundation 
Ahmed Gheith, IBM 
Brent Gorda, Lawrence Berkeley National Laboratory 
Guy Hammer, DOD-MDA 
Jeremy Kepner, MIT 
David Koester, MITRE 
Sally McKee, Cornell University 
David Nelson, National Coordination Office 
Jeffrey Nichols, Oak Ridge National Laboratory 
Keith Shields, Cray 
Jeffrey Vetter, Lawrence Livermore National Laboratory 
Theresa Windus, Pacific Northwest National Laboratory 
Patrick Worley, Oak Ridge National Laboratory 
B.7. Application-Driven System Requirements  
 
B.7.1. Charter 
Identify major classes of applications likely to dominate HEC system usage by the end of the decade. 
Determine machine properties (floating point performance, memory, interconnect performance, I/O 
capability and mass storage capacity) needed to enable major progress in each of the classes of 
applications. Discuss the impact of system architecture on applications. Determine the software tools 
needed to enable application development and support for execution. Consider the user support attributes 
including ease of use required to enable effective use of HEC systems.  
 
Questions: 
• Identify major classes of applications likely to dominate use of HEC systems in the coming decade, 

and determine the scale of resources needed to make important progress. For each class indicate the 
major hardware, software and algorithmic challenges.  

• Determine the range of critical systems parameters needed to make major progress on the 
applications that have been identified. Indicate the extent to which system architecture affects 
productivity for these applications.  

• Identify key user environment requirements, including code development and performance analysis 
tools, staff support, mass storage facilities, and networks. 

 
B.7.2 Participants 
Michael Norman (chair), University of California at San Diego  
John Van Rosendale (vice chair), Department of Energy  
 
Don Batchelor, Oak Ridge National Laboratory 
Bert de Jong, Pacific Northwest National Laboratory 
David Dixon, Pacific Northwest National Laboratory  
Howard (Flash) Gordon, National Security Agency  
Maciej Gutowski, Pacific Northwest National Laboratory 
Theresa Head-Gordon, Lawrence Berkeley National Laboratory 
Steve Jardin, Princeton University 
Peter Lyster, National Institutes of Health 
Mike Merrill, National Security Agency  
T.P. Straatsma, Pacific Northwest National Laboratory 
Robert Sugar, University of California, Santa Barbara 
Francis Sullivan, IDA/CCS 
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Theresa Windus, Pacific Northwest National Laboratory 
Paul Woodward, University of Minnesota 
 
B.8. Procurement, Accessibility, and Cost of Ownership 
 
B.8.1. Charter 
Explore the principal factors affecting acquisition and operation of HEC systems through the end of this 
decade. Identify those improvements required in procurement methods and means of user allocation and 
access. Determine the major factors that contribute to the cost of ownership of the HEC system over its 
lifetime. Identify impact of procurement strategy including benchmarks on sustained availability of 
systems 
 
Questions: 
• Evaluate the implications of the virtuous infrastructure cycle—i.e., the relationship among the 

advanced procurement development and deployment for shaping research, development, and 
procurement of HEC systems. 

• Provide information about total cost of ownership beyond procurement cost, including space, 
maintenance, utilities, upgradeability, etc. 

• Provide information about how the federal government can improve the processes of procuring and 
providing access to HEC systems and tools. 

 
B.8.2. Participants 
Frank Thames, NASA (chair) 
Jim Kasdorf, Pittsburgh Supercomputing Center (vice chair) 
 
Eugene Bal, Maui High Performance Computing Center 
Rene Copeland, Platform Computing Federal, Inc. 
Candace Culhane, National Security Agency 
Charles Hayes, HCS 
Cray Henry, DOD High-Performance Computing Modernization Office 
Christopher Jehn, Cray 
Sander Lee, DOE/NNSA 
Matt Leininger, Sandia National Laboratories 
Paul Muzio, Network Computing Service 
Graciela Narcho, National Science Foundation 
Per Nyberg, Cray 
Thomas Page, National Security Agency 
Steven Perry, Cray, Inc. 
Mark Seager, Lawrence Livermore National Laboratory 
Charles Slocomb, Los Alamos National Laboratory 
Dale Spangenberg, National Institute of Science and Technology 
Scott Studham, Pacific Northwest National Laboratory 
James Tomkins, Sandia National Laboratories 
William Turnbull, NOAA 
Gary Walter, Environmental Protection Agency 
W. Phil Webster, NASA 
Gary Wohl, National Weather Service 
Thomas Zacharia, Oak Ridge National Laboratory 
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APPENDIX C. LIST OF ATTENDEES 
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 Ohio State University/Ohio Supercomputer Center University of California, Berkeley Sandia National Labs 

 Steven F. Ashby Walter Brooks Martin M. Deneroff 
 Lawrence Livermore National Lab NASA Ames Research Center SGI 

 David A. Bader Jeffrey S. Brown Yuefan Deng 
 University of New Mexico LANL Stony Brook University 

 David H. Bailey Duncan A. Buell Jack B. Dennis 
 Lawrence Berkeley National Lab University of South Carolina MIT Lab for Computer Science 

 Eugene Bal David Callahan Carleton DeTar 
 Maui High Performance Computing Center Cray, Inc. University of Utah, Physics Dept. 

 Robert A. Ballance Kirk Cameron Judith E. Devaney 
 University of New Mexico University of South Carolina NIST 

 Donald B. Batchelor William W. Carlson David A. Dixon 
 Oak Ridge National Lab IDA Center for Computing Sciences Pacific Northwest National Lab 

 Fernand D. Bedard Siddhartha Chatterjee Jack J. Dongarra 
 NSA IBM T.J. Watson Research Center University of Tennessee 

 Herbert S. Bennett Yolanda L. Comedy Don  Dossa 
 N.I.S.T. IBM, Governmental Programs Lawrence Livermore National Lab 

 Andrew Bernat Rene G. Copeland Thom H. Dunning Jr. 
 Computing Research Association Platform Computing Federal, Inc. UT/ORNL Joint Institute for Computational Science 

 David E. Bernholdt Thomas H. Cormen Douglas L. Dwoyer 
 Oak Ridge National Lab Dartmouth College NASA Langley Research Center 

 Gyan V. Bhanot George R. Cotter Mootaz  Elnozahy 
 IBM Research National Security Agency IBM Austin Research Lab 

 Bryan A. Biegel Deborah L. Crawford Wael R. Elwasif 
 NASA Ames Research Center National Science Foundation Oak Ridge National Lab 

 Rupak  Biswas Loring G. Craymer Thomas M. Engel 
 NASA Ames Research Center Jet Propulsion Lab NCAR 

 Maurice L. Blackmon Candace S. Culhane Thomas G.W. Epperly 
 NCAR National Security Agency Lawrence Livermore National Lab 

 Patrick J. Bohrer Tamara L. Dahlgren William J. Feiereisen 
 IBM Lawrence Livermore National Lab Los Alamos National Lab/CCS Division 

 Ivo  Bolsens William J. Dally Stuart I. Feldman 
 XILINX Stanford University IBM 

 Jon M. Boyens James  Davenport Wesley M. Felter 
 U.S. Dept. of Commerce Brookhaven National Lab IBM Austin Research Lab 
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 James R. Fischer Charles W. Hayes James R. Kasdorf 
 NASA/Goddard Space Flight Ctr. HCS Pittsburgh Supercomputing Center 

 Susan Fratkin Michael J. Henesey Jeremy V. Kepner 
 CASC SRC Computers, Inc. MIT Lincoln Lab 

 Njema J. Frazier Cray J. Henry Kirk T. Kern 
 U.S. Dept of Energy/NNSA DoD High Performance Computing Modernization Office Silicon Graphics Inc. 

 Peter A. Freeman Daryl W. Hess Frankie D. King 
 National Science Foundation National Science Foundation MPS/DMR NCO/ITRD 

 David A. Fuller Richard L. Hilderbrandt Charles H. Koelbel 
 Joint National Integration Ctr. ACIR/CISE/NSF Rice University 

 Dennis Gannon Phil Hilliard David  Koester 
 Indiana University, Computer Science Dept. National Academies, CSTB MITRE 

 Guang R. Gao Richard S. Hirsh Peter M. Kogge 
 Delaware Biotechnology Institute, University of Delaware ACIR/CISE/NSF University of Notre Dame 

 Ahmed  Gheith Daniel A. Hitchcock William T.C. Kramer 
 IBM U.S. Dept. of Energy NERSC/LBNL 

 Eng Lim  Goh Thuc T. Hoang Norman H. Kreisman 
 Silicon Graphics, Inc. (SGI) DOE/NNSA Dept. of Energy 

 Brent C. Gorda Adolfy  Hoisie Gary K. Kumfert 
 Lawrence Berkeley National Lab Los Alamos National Lab CASC/LLNL 

 Howard  Gordon Sally E. Howe Alan J. Laub 
 NSA National Coordination Office, ITRD SciDAC, DOE Office of Science 

 Steven A. Gottlieb Gary D. Hughes Sander L. Lee 
 Indiana University National Security Agency DOE/NNSA 

 Robert B. Graybill Curtis L. Janssen Charles R. Lefurgy 
 DARPA Sandia National Labs IBM 

 Gary A. Grider Stephen C. Jardin Matt L. Leininger 
 Los Alamos National Lab Princeton Plasma Physics Lab Sandia National Labs 

 John  Grosh Christopher  Jehn John M. Levesque 
 DoD/OSD Cray Inc. Cray, Inc. 

 Brian D. Gross Gary M. Johnson Greg B. Lindahl 
 U.S. DOC/NOAA/GFDL, Princeton University U.S. Dept of Energy, Office of Science Key Research, Inc. 

 Maciej S. Gutowski Frederick C. Johnson Peter M. Lyster 
 Pacific Northwest National Lab Dept. of Energy/Office of Science National Institutes of Health 

 John H. Hall Tina M. Kaarsberg Arthur B. Maccabe 
 Los Alamos National Lab U.S. House of Representatives University of New Mexico, HPC 

 Guy S. Hammer David K. Kahaner Kevin P. Martin 
 Missile Defense Agency Asian Technology Information Program (ATIP) Georgia Institute of Technology 

 Leslie B. Hart Laxmikant V. Kale Sally A. McKee 
 NOAA/FSL University of Illinois - Urbana Champaign Cornell University 
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